Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Antiproliferative Effect in Human Prostatic Smooth Muscle Cells by Nitric Oxide Donor

Jih-Hwa Guh, Tsong-Long Hwang, Feng-Nien Ko, Shih-Chieh Chueh, Ming-Kuen Lai and Che-Ming Teng
Molecular Pharmacology March 1998, 53 (3) 467-474; DOI: https://doi.org/10.1124/mol.53.3.467
Jih-Hwa Guh
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tsong-Long Hwang
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Feng-Nien Ko
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shih-Chieh Chueh
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ming-Kuen Lai
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Che-Ming Teng
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We obtained a primary culture of prostatic cells through explantation from patients with benign prostatic hyperplasia. Structural morphology, immunohistochemical staining, and growth characteristics of these cells demonstrate that they are consistent with the population of smooth muscle cells (SMCs). We examined the influence of a nitric oxide donor, sodium nitroprusside (SNP), on the regulation of human prostatic SMC proliferation. SNP exhibited a concentration-dependent (0.1–10 μm) inhibition of fetal calf serum-induced proliferation in human prostatic SMCs. In addition, growth-inhibitory responses to 8-bromo-cGMP (1–30 μm) were observed. However, the responses to SNP were significantly diminished by the presence of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (3 μm; a selective guanylate cyclase inhibitor). Furthermore, SNP induced an increased concentration-dependent accumulation of intracellular cGMP in human prostatic SMCs. After 48-hr period of deprivation of serum, cells were restimulated with serum to permit cell cycle progression. The addition of SNP (10 μm) at various times after the addition of serum to serum-deprived cells showed maximal inhibition of cell proliferation even when added 6 hr after the serum. This blocking effect of cell cycle progression was lost gradually as the delay from serum to SNP application increased from 6 to 18 hr. The membrane-associated protein kinase C (PKC) activity was studied in human prostatic SMCs; results showed that fetal calf serum (10%, v/v) significantly increased membrane-associated PKC activity. SNP (10 μm), which had little effect on basal kinase activity, completely abolished serum-induced augmentation of PKC activity. Therefore, we suggest that SNP mediates its antiproliferative effect by the inhibition of PKC activity on human prostatic SMCs; furthermore, its antiproliferative effect occurs at the early G1 phase of the cell cycle.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 53 (3)
Molecular Pharmacology
Vol. 53, Issue 3
1 Mar 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Antiproliferative Effect in Human Prostatic Smooth Muscle Cells by Nitric Oxide Donor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Antiproliferative Effect in Human Prostatic Smooth Muscle Cells by Nitric Oxide Donor

Jih-Hwa Guh, Tsong-Long Hwang, Feng-Nien Ko, Shih-Chieh Chueh, Ming-Kuen Lai and Che-Ming Teng
Molecular Pharmacology March 1, 1998, 53 (3) 467-474; DOI: https://doi.org/10.1124/mol.53.3.467

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Antiproliferative Effect in Human Prostatic Smooth Muscle Cells by Nitric Oxide Donor

Jih-Hwa Guh, Tsong-Long Hwang, Feng-Nien Ko, Shih-Chieh Chueh, Ming-Kuen Lai and Che-Ming Teng
Molecular Pharmacology March 1, 1998, 53 (3) 467-474; DOI: https://doi.org/10.1124/mol.53.3.467
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics