Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Nuclear Localization of Overexpressed Glyceraldehyde-3-Phosphate Dehydrogenase in Cultured Cerebellar Neurons Undergoing Apoptosis

Ryoichi Ishitani, Masaharu Tanaka, Katsuyoshi Sunaga, Nobuo Katsube and De-Maw Chuang
Molecular Pharmacology April 1998, 53 (4) 701-707; DOI: https://doi.org/10.1124/mol.53.4.701
Ryoichi Ishitani
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masaharu Tanaka
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katsuyoshi Sunaga
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nobuo Katsube
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
De-Maw Chuang
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We recently reported that overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) is directly involved in cytosine arabinonucleoside (ara-C)- and low K+-induced neuronal death of cultured cerebellar granule cells. The former is entirely due to apoptosis, whereas the latter involves both apoptosis and necrosis. We examined the subcellular distribution of the overexpressed GAPDH occurring during apoptosis by using both subcellular fractionation and immunocytochemistry with a monoclonal antibody directed against this overexpressed protein. When immature cerebellar neurons were exposed to ara-C, an overexpression of GAPDH was observed, primarily in the nuclear fraction. In contrast, low K+ exposure of mature cerebellar neurons induced the overexpression of GAPDH not only in the nuclear fraction but also in the mitochondrial fraction. In both paradigms, no significant change of GAPDH levels occurred in the microsomal and cytosolic fractions. Moreover, pretreatment with GAPDH antisense oligonucleotide or classic apoptotic inhibitors clearly suppressed the accumulation of GAPDH protein in these subcellular loci. This discrete nuclear localization of GAPDH during apoptosis was supported further by immunoelectron microscopy. Quantitative assessment of GAPDH immunogold labeling revealed that a ∼5-fold increase in the intensity of gold particles was observed within the nucleus of apoptotic cells. Thus, the current results raise the possibility that neuronal apoptosis may be triggered by GAPDH accumulation in the nucleus, resulting in perturbation of nuclear function and ultimate cell death.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 53 (4)
Molecular Pharmacology
Vol. 53, Issue 4
1 Apr 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nuclear Localization of Overexpressed Glyceraldehyde-3-Phosphate Dehydrogenase in Cultured Cerebellar Neurons Undergoing Apoptosis
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Nuclear Localization of Overexpressed Glyceraldehyde-3-Phosphate Dehydrogenase in Cultured Cerebellar Neurons Undergoing Apoptosis

Ryoichi Ishitani, Masaharu Tanaka, Katsuyoshi Sunaga, Nobuo Katsube and De-Maw Chuang
Molecular Pharmacology April 1, 1998, 53 (4) 701-707; DOI: https://doi.org/10.1124/mol.53.4.701

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Nuclear Localization of Overexpressed Glyceraldehyde-3-Phosphate Dehydrogenase in Cultured Cerebellar Neurons Undergoing Apoptosis

Ryoichi Ishitani, Masaharu Tanaka, Katsuyoshi Sunaga, Nobuo Katsube and De-Maw Chuang
Molecular Pharmacology April 1, 1998, 53 (4) 701-707; DOI: https://doi.org/10.1124/mol.53.4.701
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics