Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Characterization of the Allosteric Interactions between Antagonists and Amiloride Analogues at the Human α2A-Adrenergic Receptor

Ray A. Leppik, Sebastian Lazareno, Anita Mynett and Nigel J. M. Birdsall
Molecular Pharmacology May 1998, 53 (5) 916-925;
Ray A. Leppik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sebastian Lazareno
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anita Mynett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nigel J. M. Birdsall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The purpose of this study was to determine whether there is a well-defined allosteric site on the human α2A-adrenergic receptor. To explore this question, we examined the effects of amiloride analogues on the dissociation of [3H]yohimbine, [3H]rauwolscine, and [3H]RX821002. The dissociation data fitted well to an equation derived from the ternary complex allosteric model with amiloride analogue concentration and time as two independent variables. The estimated maximal increase in the [3H]yohimbine dissociation rate caused by the 5-N-alkyl amilorides varied from 2-fold for the parent amiloride to 140- and 160-fold for 5-(N,N-hexamethylene)-amiloride and 5-(N-ethyl-N-isopropyl)-amiloride, respectively. The calculated log affinities at the yohimbine-occupied receptor ranged from 1.75 for 5-(N-ethyl-N-isopropyl)-amiloride to 2.5 for 5-(N,N-hexamethylene)-amiloride. The increase in affinity found at the yohimbine-occupied receptor was not correlated with increase in size of the 5-N-alkyl side chain, in contrast to the situation found at the unoccupied receptor. The effect of competition between two amilorides on yohimbine dissociation also was explored. The data obtained were well fitted by the equation derived from the relevant model, with the off-rate increases caused by 5-(N,N-hexamethylene)-amiloride being either decreased or increased by the competing amiloride analogue in line with predictions, and the parameters derived from the fits were in good agreement with those obtained in the above dissociation assays. Thus, the data are compatible with the amilorides competing at the one allosteric site on the α2A-adrenergic receptor and rules out the possibility that the amilorides are acting in a nonspecific fashion.

Footnotes

  • Send reprint requests to: Dr. Ray Leppik, Department of Physical Biochemistry, NIMR, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom. E-mail: r.leppik{at}nimr.mrc.ac.uk

  • This work was supported by a ROPA Research Grant (R.A.L., A.M.).

  • Abbreviations:
    DMA
    5-(N,N-dimethyl)-amiloride
    CHO
    Chinese hamster ovary
    BZA
    benzamil
    EPA
    5-(N-ethyl-N-isopropyl)-amiloride
    HMA
    5-(N,N-hexamethylene)-amiloride
    MBA
    5-(N-methyl-N-isobutyl)-amiloride
    DMF
    N,N-dimethylformamide
    HEPES
    4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
    • Received October 10, 1997.
    • Accepted January 29, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 53 (5)
Molecular Pharmacology
Vol. 53, Issue 5
1 May 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of the Allosteric Interactions between Antagonists and Amiloride Analogues at the Human α2A-Adrenergic Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Characterization of the Allosteric Interactions between Antagonists and Amiloride Analogues at the Human α2A-Adrenergic Receptor

Ray A. Leppik, Sebastian Lazareno, Anita Mynett and Nigel J. M. Birdsall
Molecular Pharmacology May 1, 1998, 53 (5) 916-925;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Characterization of the Allosteric Interactions between Antagonists and Amiloride Analogues at the Human α2A-Adrenergic Receptor

Ray A. Leppik, Sebastian Lazareno, Anita Mynett and Nigel J. M. Birdsall
Molecular Pharmacology May 1, 1998, 53 (5) 916-925;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Radioligand Dissociation in the Presence of Allosteric Agents
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Nelfinavir and PXR
  • P2X7 Positive Modulator Structure-Activity Relationship
  • Predicting Drug Interactions with ENT1 and ENT2
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics