Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Sensitivity to Cisplatin and Platinum-Containing Compounds ofSchizosaccharomyces pombe Rad Mutants

Paola Perego, Franco Zunino, Nives Carenini, Fernando Giuliani, Silvano Spinelli and Stephen B. Howell
Molecular Pharmacology July 1998, 54 (1) 213-219; DOI: https://doi.org/10.1124/mol.54.1.213
Paola Perego
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Franco Zunino
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nives Carenini
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fernando Giuliani
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Silvano Spinelli
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen B. Howell
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The role of genes that affect response to radiation in determining sensitivity to platinum-containing compounds was studied using a panel of 23 strains of the yeast Schizosaccharomyces pombe. The radiation-hypersensitive mutants all had the same genetic background and most of them contained mutations that disabled either cell cycle checkpoints or DNA repair. The tested platinum compounds included cisplatin and two complexes containing diaminocyclohexane (oxaliplatin and tetraplatin), two ammine/cyclohexylamine complexes with different orientation of the leaving groups (JM216 and JM335) and a multinuclear platinum complex (BBR 3464). The cytotoxic effect of the selected platinum complexes was evaluated by using a microtiter growth inhibition assay with a 48 hr exposure to drug. The mutants fell into three groups with respect to sensitivity to cisplatin: four mutants (rad2, -7, -11, -15) exhibited minimal change in sensitivity; fifteen mutants (rad4–6, -8–10, -12–14, -16–17, -19–21, and -22) were 5.1–21.7-fold hypersensitive; only rad1 and -3 mutants, defective in checkpoints, and rad18, defective in repair, displayed a marked hypersensitivity. None of the mutants demonstrated appreciable change in sensitivity to JM216 presumably as a consequence of a lack of resistance of the wild-type strain, whereas a moderate increase in sensitivity to JM335 was observed for most of the mutants, and hypersensitivity to BBR3464 was observed only in rad1 and -3. No relevant changes in sensitivity to tetraplatin were observed. Most of the mutants, with the exception of rad2, -7, and -15, were hypersensitive to oxaliplatin. These findings demonstrate that specific mutations have disparate effects on the profile of sensitivity to different members of the same class of cytotoxic agents, which provides genetic evidence that different mechanisms are involved in differential cytotoxicity induced by Pt compounds. The results also demonstrate the utility of such a panel of mutants, constructed on the same genetic background, for detecting specific cellular response; presumably, this reflects the recognition or processing of specific DNA adducts. In conclusion, because the rad1 and rad3 gene products are determinants of cellular response to a large number of platinum-containing compounds, the present results support a critical role of genes involved in cell cycle control in cellular sensitivity to these agents.

Footnotes

    • Received November 26, 1997.
    • Accepted April 9, 1998.
  • Send reprint requests to: Dr. Paola Perego, Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy. E-mail:perego{at}istitutotumori.mi.it

  • This work was supported in part by Associazione Italiana per la Ricerca sul Cancro, Consiglio Nazionale delle Ricerche (Finalized Project ACRO), Italian Ministero della Sanita’ and by a research contract from Sanofi Research. This work was conducted in part by the Clayton Foundation for Research—California Division. Dr. Howell is a Clayton Foundation investigator.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 54 (1)
Molecular Pharmacology
Vol. 54, Issue 1
1 Jul 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sensitivity to Cisplatin and Platinum-Containing Compounds ofSchizosaccharomyces pombe Rad Mutants
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Sensitivity to Cisplatin and Platinum-Containing Compounds ofSchizosaccharomyces pombe Rad Mutants

Paola Perego, Franco Zunino, Nives Carenini, Fernando Giuliani, Silvano Spinelli and Stephen B. Howell
Molecular Pharmacology July 1, 1998, 54 (1) 213-219; DOI: https://doi.org/10.1124/mol.54.1.213

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Sensitivity to Cisplatin and Platinum-Containing Compounds ofSchizosaccharomyces pombe Rad Mutants

Paola Perego, Franco Zunino, Nives Carenini, Fernando Giuliani, Silvano Spinelli and Stephen B. Howell
Molecular Pharmacology July 1, 1998, 54 (1) 213-219; DOI: https://doi.org/10.1124/mol.54.1.213
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics