Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Photoaffinity Labeling of the Benzodiazepine Binding Site of α1β3γ2 γ-Aminobutyric AcidA Receptors with Flunitrazepam Identifies a Subset of Ligands that Interact Directly with His102 of the α Subunit and Predicts Orientation of These within the Benzodiazepine Pharmacophore

Ruth M. McKernan, Sophie Farrar, Ian Collins, Frances Emms, Ayodeji Asuni, Kathleen Quirk and Howard Broughton
Molecular Pharmacology July 1998, 54 (1) 33-43; DOI: https://doi.org/10.1124/mol.54.1.33
Ruth M. McKernan
Departments of 1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sophie Farrar
Departments of 1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ian Collins
Departments of 1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frances Emms
Departments of 1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ayodeji Asuni
Departments of 1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathleen Quirk
Departments of 1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Howard Broughton
Departments of 1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Photoincorporation of ligands into the benzodiazepine site of native γ-aminobutyric acidA (GABAA) receptors provides useful information about the nature of the benzodiazepine (BZ) binding site. Photoincorporation of flunitrazepam into a single population of GABAA receptors, recombinant human α1β3γ2, was investigated to probe further the mechanism and orientation of flunitrazepam and other ligands in the BZ binding site. It was concluded that the receptor is primarily derivatized with the entire, unfragmented, flunitrazepam molecule, which undergoes a conformational change during photolysis and largely vacates the benzodiazepine binding site. Investigation of the BZ site after photoincorporation of [3H]flunitrazepam confirmed that binding of other radioligands was unaffected by incorporation of flunitrazepam. This did not correlate with their efficacy but depended on the presence of particular structural features in the molecule. It was observed that affected compounds have a pendant phenyl moiety, analogous to the 5-phenyl group of flunitrazepam, which are proposed to overlap and interact with the same residue or residues in the BZ binding site. Because the major site of flunitrazepam photoincorporation has been shown to be His102, we propose that this group of compounds interacts directly with His 102, whereas compounds of other structural types have no direct interaction with this amino acid. The orientation of ligands within the BZ binding site and their specific interaction with identified amino acids are not well understood. The data in the current study indicate that His102 interacts directly with the pendant phenyl group of diazepam, and further implications for the pharmacophore of the BZ binding site are discussed.

Footnotes

    • Received December 26, 1997.
    • Accepted March 13, 1998.
  • Send reprint requests to: Dr. Ruth McKernan, Department of Biochemistry, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex CM2O 2QR, UK. E-mail:ruth_mckernan{at}merck.com

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 54 (1)
Molecular Pharmacology
Vol. 54, Issue 1
1 Jul 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Photoaffinity Labeling of the Benzodiazepine Binding Site of α1β3γ2 γ-Aminobutyric AcidA Receptors with Flunitrazepam Identifies a Subset of Ligands that Interact Directly with His102 of the α Subunit and Predicts Orientation of These within the Benzodia…
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Photoaffinity Labeling of the Benzodiazepine Binding Site of α1β3γ2 γ-Aminobutyric AcidA Receptors with Flunitrazepam Identifies a Subset of Ligands that Interact Directly with His102 of the α Subunit and Predicts Orientation of These within the Benzodiazepine Pharmacophore

Ruth M. McKernan, Sophie Farrar, Ian Collins, Frances Emms, Ayodeji Asuni, Kathleen Quirk and Howard Broughton
Molecular Pharmacology July 1, 1998, 54 (1) 33-43; DOI: https://doi.org/10.1124/mol.54.1.33

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Photoaffinity Labeling of the Benzodiazepine Binding Site of α1β3γ2 γ-Aminobutyric AcidA Receptors with Flunitrazepam Identifies a Subset of Ligands that Interact Directly with His102 of the α Subunit and Predicts Orientation of These within the Benzodiazepine Pharmacophore

Ruth M. McKernan, Sophie Farrar, Ian Collins, Frances Emms, Ayodeji Asuni, Kathleen Quirk and Howard Broughton
Molecular Pharmacology July 1, 1998, 54 (1) 33-43; DOI: https://doi.org/10.1124/mol.54.1.33
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics