Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Identification of Transmembrane Regions Critical for Ligand Binding to the Human D3 Dopamine Receptor Using Various D3/D1 Transmembrane Chimeras

Glen L. Alberts, Jeffrey F. Pregenzer and Wha Bin Im
Molecular Pharmacology August 1998, 54 (2) 379-388; DOI: https://doi.org/10.1124/mol.54.2.379
Glen L. Alberts
CNS Diseases Research, Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49001
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey F. Pregenzer
CNS Diseases Research, Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49001
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wha Bin Im
CNS Diseases Research, Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49001
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To investigate the roles of individual transmembrane segments (TM) of the human D3 dopamine receptor in its ligand-receptor interactions, we generated chimeric receptors in which its TMs were replaced, one at a time, partially or entirely, by the corresponding TM of the homologous human D1 receptor. Ligand binding properties of the chimeras, as expressed heterologously in Sf9 cells using recombinant baculoviruses, indicate that the critical binding regions for D3-selective (over D1) ligands reside at narrow regions (6 to 8 residues) near the extracellular surface for TMI, II, IV and VI, while TMV seems to be minimally involved in the ligand selectivity. For TMIII and TMVII, the critical regions seem to be deeper, involving at least the 10 residues near the extracellular surface for TMIII, and the entire TM segment for TMVII. This is based on our current observations that the chimeras with the D3 sequence in the critical regions, although the rest of the TM is of D1 origin (except TMVII), showed the binding properties indistinguishable from those of the wild-type receptor. The chimeras with the D1 sequence in the regions, on the other hand, showed ligand binding characteristics wildly variable depending on substituted TMs: Most marked decreases in ligand affinities were observed with the chimeras of TMIII and VII, and intermediate changes with those of TMIV and VI. Replacements of TMV produced no appreciable effects on the affinities of 14 test ligands (except for one). The chimeras of TMI and II with the D1sequence in the critical regions showed no appreciable specific binding for several radioactive D3-selective ligands, possibly reflecting their critical roles in assembly and folding of the receptor. These critical regions of the D3 receptor were highly homologous to those of the D2 receptor, except for several nonconservatively substituted residues, which could be exploited to develop ligands selective for the D3 over D2 dopamine receptor or vice versa.

Footnotes

    • Received August 28, 1997.
    • Accepted April 22, 1998.
  • Send reprint requests to: Dr. Wha Bin Im, CNS Diseases Research, 725–209-512, Pharmacia & Upjohn, Inc., Kalamazoo, MI 49001. E-mail: wbim{at}am.pnu.com

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 54 (2)
Molecular Pharmacology
Vol. 54, Issue 2
1 Aug 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of Transmembrane Regions Critical for Ligand Binding to the Human D3 Dopamine Receptor Using Various D3/D1 Transmembrane Chimeras
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Identification of Transmembrane Regions Critical for Ligand Binding to the Human D3 Dopamine Receptor Using Various D3/D1 Transmembrane Chimeras

Glen L. Alberts, Jeffrey F. Pregenzer and Wha Bin Im
Molecular Pharmacology August 1, 1998, 54 (2) 379-388; DOI: https://doi.org/10.1124/mol.54.2.379

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Identification of Transmembrane Regions Critical for Ligand Binding to the Human D3 Dopamine Receptor Using Various D3/D1 Transmembrane Chimeras

Glen L. Alberts, Jeffrey F. Pregenzer and Wha Bin Im
Molecular Pharmacology August 1, 1998, 54 (2) 379-388; DOI: https://doi.org/10.1124/mol.54.2.379
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of Celecoxib targets by label-free TPP
  • Editing TOP2α Intron 19 5′ SS Circumvents Drug Resistance
  • CTS Bias
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics