Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

A Dileucine Sequence and an Upstream Glutamate Residue in the Intracellular Carboxyl Terminus of the Vasopressin V2Receptor Are Essential for Cell Surface Transport in COS.M6 Cells

Ralf Schülein, Ricardo Hermosilla, Alexander Oksche, Marcel Dehe, Burkhard Wiesner, Gerd Krause and Walter Rosenthal
Molecular Pharmacology September 1998, 54 (3) 525-535; DOI: https://doi.org/10.1124/mol.54.3.525
Ralf Schülein
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ricardo Hermosilla
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander Oksche
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marcel Dehe
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Burkhard Wiesner
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerd Krause
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Walter Rosenthal
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Little is known concerning the intracellular transport of the G protein-coupled receptors (GPCRs). Previous studies suggested a functional role for those residues immediately preceding the conserved palmitoylated cysteine residues in the intracellular carboxyl termini of some GPCRs in cell surface transport. For the human vasopressin V2 receptor, we assessed the significance of a dileucine sequence with an upstream glutamate residue (ELRSLLCC) in mediating cell surface delivery. A series of deletion and point mutants in this region were constructed, and the mutant receptors were expressed in transiently transfected COS.M6 cells. By using [3H]arginine vasopressin binding assays to intact cells and immunofluorescence studies with intact and permeabilized cells, we show that residues E335 (mutant E335Q) and L339 (mutant L339T) are obligatory for receptor transport to the plasma membrane. Residue L340 has a minor but significant influence. [3H]Arginine vasopressin binding experiments on membranes of lysed cells failed to detect any intracellular binding sites for the transport-deficient mutant receptors, suggesting that residues E335 and L339 participate in receptor folding. Studies with green fluorescent protein-tagged receptors demonstrate that the bulk of the mutant receptors E335Q and L339T are trapped in the endoplasmic reticulum. Complex glycosylation was absent in these mutant receptors, supporting this conclusion. These data demonstrate that the glutamate/dileucine motif of the vasopressin V2 receptor is critical for the escape of the receptor from the endoplasmic reticulum, most presumably by establishing a functional and transport-competent folding state. A databank analysis revealed that these residues are part of a conserved region in the GPCR family.

Footnotes

    • Received November 20, 1997.
    • Accepted June 5, 1998.
  • Send reprint requests to: Dr. Ralf Schülein, Forschungsinstitut für Molekulare Pharmakologie (FMP), Alfred-Kowalke-Str. 4, D-10315 Berlin, Germany. E-mail:schuelein{at}fmp-berlin.de

  • This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB249 and SFB366). R.H. is a recipient of a fellowship from the Deutscher Akademischer Austauschdienst.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 54 (3)
Molecular Pharmacology
Vol. 54, Issue 3
1 Sep 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Dileucine Sequence and an Upstream Glutamate Residue in the Intracellular Carboxyl Terminus of the Vasopressin V2Receptor Are Essential for Cell Surface Transport in COS.M6 Cells
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A Dileucine Sequence and an Upstream Glutamate Residue in the Intracellular Carboxyl Terminus of the Vasopressin V2Receptor Are Essential for Cell Surface Transport in COS.M6 Cells

Ralf Schülein, Ricardo Hermosilla, Alexander Oksche, Marcel Dehe, Burkhard Wiesner, Gerd Krause and Walter Rosenthal
Molecular Pharmacology September 1, 1998, 54 (3) 525-535; DOI: https://doi.org/10.1124/mol.54.3.525

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

A Dileucine Sequence and an Upstream Glutamate Residue in the Intracellular Carboxyl Terminus of the Vasopressin V2Receptor Are Essential for Cell Surface Transport in COS.M6 Cells

Ralf Schülein, Ricardo Hermosilla, Alexander Oksche, Marcel Dehe, Burkhard Wiesner, Gerd Krause and Walter Rosenthal
Molecular Pharmacology September 1, 1998, 54 (3) 525-535; DOI: https://doi.org/10.1124/mol.54.3.525
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics