Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Agonist Action of Adenosine Triphosphates at the Human P2Y1 Receptor

R. Kyle Palmer, José L. Boyer, Joel B. Schachter, Robert A. Nicholas and T. Kendall Harden
Molecular Pharmacology December 1998, 54 (6) 1118-1123; DOI: https://doi.org/10.1124/mol.54.6.1118
R. Kyle Palmer
Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
José L. Boyer
Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joel B. Schachter
Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert A. Nicholas
Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Kendall Harden
Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The agonist selectivity for adenosine di- and triphosphates was determined for the human P2Y1 receptor stably expressed in human 1321N1 astrocytoma cells and was studied under conditions in which nucleotide metabolism was both minimized and assessed. Cells were grown at low density on glass coverslips, encased in a flow-through chamber, and continuously superfused with medium, and Ca2+responses to nucleotides were quantified. Superfusion with high performance liquid chromatographically purified ADP, ATP, 2-methylthio-ADP, and 2-methylthio-ATP resulted in rapid Ca2+ responses, with EC50 values of 10 ± 5, 304 ± 51, 2 ± 1, and 116 ± 50 nm, respectively. Similar peak responses were observed with maximal concentrations of these four agonists and with the hydrolysis-resistant adenine nucleoside triphosphate adenosine-5′-O-(3-thiotriphosphate). No conversion of [3H]ATP to [3H]ADP occurred under these conditions. Similar full agonist activities of ATP, 2-methylthio-ATP, and ADP were observed in human embryonic kidney 293 cells, which natively express the P2Y1 receptor. In contrast to these results, Leon et al. [FEBS Lett 403:26–30 (1997)] and Hechler et al.[Mol Pharmacol 53:727–733 (1998)] recently reported that, whereas ADP and 2-methylthio-ADP were agonists, ATP and 2-methylthio-ATP were weak antagonists in studies of the human P2Y1 receptor expressed in human Jurkat cells. To assess whether differences in the degree of receptor reserve might explain this discrepancy of results, P2Y1 receptor-expressing 1321N1 cells were incubated for 24 hr with adenosine-5′-O-(2-thiodiphosphate), with the goal of down-regulating the level of functional receptors. Pretreatment with adenosine-5′-O-(2-thiodiphosphate) resulted in a 10-fold rightward shift in the concentration-effect curve for ADP; in contrast, the agonist activity of ATP was completely abolished. Taken together, our results indicate that adenosine di- and triphosphates are agonists at the human P2Y1 receptor. However, the intrinsic efficacy of ATP is less than that of ADP, and the capacity of ATP to activate second messenger responses through this receptor apparently depends on the degree of P2Y1 receptor reserve.

Footnotes

    • Received June 22, 1998.
    • Accepted September 15, 1998.
  • Send reprint requests to: Dr. T. Kendall Harden, CB 7365, Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7365. E-mail:tkh{at}med.unc.edu

  • This work was supported by United States Public Health Service Grants GM38213 and HL54889 and by a National Research Service Award (GM18464) to R.K.P.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 54 (6)
Molecular Pharmacology
Vol. 54, Issue 6
1 Dec 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Agonist Action of Adenosine Triphosphates at the Human P2Y1 Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Agonist Action of Adenosine Triphosphates at the Human P2Y1 Receptor

R. Kyle Palmer, José L. Boyer, Joel B. Schachter, Robert A. Nicholas and T. Kendall Harden
Molecular Pharmacology December 1, 1998, 54 (6) 1118-1123; DOI: https://doi.org/10.1124/mol.54.6.1118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Agonist Action of Adenosine Triphosphates at the Human P2Y1 Receptor

R. Kyle Palmer, José L. Boyer, Joel B. Schachter, Robert A. Nicholas and T. Kendall Harden
Molecular Pharmacology December 1, 1998, 54 (6) 1118-1123; DOI: https://doi.org/10.1124/mol.54.6.1118
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
  • Allosteric Modulation of Metabotropic Glutamate Receptor 1
  • Mechanism of Selective Action of Paraherquamide A
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics