Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Cycloguanil and Its Parent Compound Proguanil Demonstrate Distinct Activities against Plasmodium falciparumMalaria Parasites Transformed with Human Dihydrofolate Reductase

David A. Fidock, Takashi Nomura and Thomas E. Wellems
Molecular Pharmacology December 1998, 54 (6) 1140-1147; DOI: https://doi.org/10.1124/mol.54.6.1140
David A. Fidock
Malaria Genetics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0425
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Nomura
Malaria Genetics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0425
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas E. Wellems
Malaria Genetics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0425
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The lack of suitable antimalarial agents to replace chloroquine and pyrimethamine/sulfadoxine threatens efforts to control the spread of drug-resistant strains of the malaria parasite Plasmodium falciparum. Here we describe a transformation system, involving WR99210 selection of parasites transformed with either wild-type or methotrexate-resistant human dihydrofolate reductase (DHFR), that has application for the screening of P. falciparum-specific DHFR inhibitors that are active against drug-resistant parasites. Using this system, we have found that the prophylactic drug cycloguanil has a mode of pharmacological action distinct from the activity of its parent compound proguanil. Complementation assays demonstrate that cycloguanil acts specifically on P. falciparum DHFR and has no other significant target. The target of proguanil itself is separate from DHFR. We propose a strategy of combination chemotherapy incorporating the use of multiple parasite-specific inhibitors that act at the same molecular target and thereby maintain, in combination, their effectiveness against alternative forms of resistance that arise from different sets of point mutations in the target. This approach could be combined with traditional forms of combination chemotherapy in which two or more compounds are used against separate targets.

Footnotes

    • Received July 10, 1998.
    • Accepted September 14, 1998.
  • Send reprint requests to: Dr. Thomas E. Wellems, Malaria Genetics Section, LPD, NIAID, Building 4, Room 126, 4 Center Drive, MSC 0425, NIH, Bethesda, MD 20892-0425. E-mail:tew{at}helix.nih.gov

  • ↵1 Permanent address: Unité de Parasitologie Bio-Médicale, Institut Pasteur, 75724 Paris Cedex 15, France.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 54 (6)
Molecular Pharmacology
Vol. 54, Issue 6
1 Dec 1998
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cycloguanil and Its Parent Compound Proguanil Demonstrate Distinct Activities against Plasmodium falciparumMalaria Parasites Transformed with Human Dihydrofolate Reductase
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Cycloguanil and Its Parent Compound Proguanil Demonstrate Distinct Activities against Plasmodium falciparumMalaria Parasites Transformed with Human Dihydrofolate Reductase

David A. Fidock, Takashi Nomura and Thomas E. Wellems
Molecular Pharmacology December 1, 1998, 54 (6) 1140-1147; DOI: https://doi.org/10.1124/mol.54.6.1140

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Cycloguanil and Its Parent Compound Proguanil Demonstrate Distinct Activities against Plasmodium falciparumMalaria Parasites Transformed with Human Dihydrofolate Reductase

David A. Fidock, Takashi Nomura and Thomas E. Wellems
Molecular Pharmacology December 1, 1998, 54 (6) 1140-1147; DOI: https://doi.org/10.1124/mol.54.6.1140
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Effects of Small Molecule Ligands on ACKR3 Receptors
  • Michaelis-Menten Quantification of GPCR-G Protein Signaling
  • Anti-aromatase activity of exemestane phase II metabolites
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics