Abstract
Δ9-Tetrahydrocannabinol (Δ9-THC) is the principal psychoactive ingredient in marijuana. We examined the effects of Δ9-THC on glutamatergic synaptic transmission. Reducing the extracellular Mg++ concentration bathing rat hippocampal neurons in culture to 0.1 mM elicited a repetitive pattern of glutamatergic synaptic activity that produced intracellular Ca++ concentration spikes that were measured by indo-1-based microfluorimetry. Δ9-THC produced a concentration-dependent inhibition of spike frequency with an EC50 of 20 ± 4 nM and a maximal inhibition of 41 ± 3%. Thus, Δ9-THC was potent, but had low intrinsic activity. Δ9-THC (100 nM) inhibition of spiking was reversed by 300 nMN-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR 141716), indicating that the inhibition was mediated by CB1 cannabinoid receptors. Δ9-THC attenuated the inhibition produced by a full cannabinoid receptor agonist, (+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-napthalenyl)methanone monomethanesulfonate (Win 55212-2), indicating that Δ9-THC is a partial agonist. The effect of Δ9-THC on synaptic currents was also studied. 6-Cyano-2,3-dihydroxy-7-niroquiinoxaline (CNQX)-sensitive excitatory postsynaptic currents were recorded from cells held at −70 mV in the whole-cell configuration of the patch-clamp and elicited by presynaptic stimulation with an extracellular electrode. Win 55212-2 and Δ9-THC inhibited excitatory postsynaptic current (EPSC) amplitude by 96 ± 2% and 57 ± 4%, respectively. Excitatory postsynaptic current amplitude was reduced to 75 ± 5% in the presence of both drugs, demonstrating that Δ9-THC is a partial agonist. The psychotropic effects of Δ9-THC may result from inhibition of glutamatergic synaptic transmission. The modest physical dependence produced by Δ9-THC as well as its lack of acute toxicity may be due to the ability of the drug to reduce, but not block, excitatory neurotransmission.
Footnotes
- Received May 13, 1998.
- Accepted October 21, 1998.
-
Send reprint requests to: Dr. S. A. Thayer, Department of Pharmacology, University of Minnesota Medical School, 3-249 Millard Hall, 435 Delaware St., S. E., Minneapolis, MN 55455. E-mail:thayer{at}med.umn.edu
-
This work was supported by grants from the National Institute on Drug Abuse (DA07304, DA09293) and the National Science Foundation (IBN9723796). M. S. was supported by NIDA Training Grant DA07097.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|