Abstract
The clinical efficacy of hydroxyurea (HU) in the treatment of sickle cell anemia has mainly been attributed to increased levels of fetal hemoglobin (HbF), which reduces the tendency for sickle hemoglobin to polymerize, thereby reducing the frequency of the vaso-occlusive phenomena associated with the disease. However, benefits from HU treatment in patients have been reported in advance of increased HbF levels. Thus, it has been suggested that other hydroxyurea-dependent mechanisms may, in part, account for its clinical efficacy. We have previously demonstrated that HU is metabolized in rats to release nitric oxide and, therefore, postulated the same to occur in humans. However, to our knowledge, evidence of nitric oxide production from HU metabolism in humans has yet to be demonstrated. Here we report that oral administration of HU for the treatment of sickle cell anemia produced detectable nitrosyl hemoglobin. The nitrosyl hemoglobin complex could be detected as early as 30 min after administration and persisted up to 4 h. Our observations support the hypothesis that the ability of HU to ease the vaso-occlusive phenomena may, in part, be attributed to vasodilation and/or decreased platelet activation induced by HU-derived nitric oxide well in advance of increased HbF levels.
Footnotes
- Received December 15, 1998.
- Accepted February 25, 1999.
-
Send reprint requests to: Dr. Richard E. Glover, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709. E-mail: glover1{at}niehs.nih.gov
- U.S. Government
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|