Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Ethanol Inhibition of Synaptically Evoked Kainate Responses in Rat Hippocampal CA3 Pyramidal Neurons

Jeff L. Weiner, Thomas V. Dunwiddie and C. Fernando Valenzuela
Molecular Pharmacology July 1999, 56 (1) 85-90; DOI: https://doi.org/10.1124/mol.56.1.85
Jeff L. Weiner
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas V. Dunwiddie
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Fernando Valenzuela
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Many studies have demonstrated that intoxicating concentrations of ethanol (10–100 mM) can selectively inhibit the component of glutamatergic synaptic transmission mediated byN-methyl-d-aspartate (NMDA) receptors while having little or no effect on excitatory synaptic transmission mediated by non-NMDA receptors [i.e., α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and/or kainate (KA) receptors]. However, until the recent development of highly selective AMPA receptor antagonists, it was not possible to assess the relative contribution of AMPA and KA receptors to non-NMDA receptor-mediated synaptic transmission or to determine whether these glutamate receptor subtypes differed in their sensitivity to ethanol. In the present experiments, we used the highly selective AMPA receptor antagonist LY 303070 to pharmacologically isolate KA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal CA3 pyramidal neurons and tested their sensitivity to ethanol. Concentrations of ethanol as low as 20 mM significantly and reversibly depressed KA EPSCs. Ethanol also inhibited KA currents evoked by direct pressure application of KA in the presence of LY 303070, suggesting that this inhibition was mediated by a postsynaptic action. In contrast, ethanol had no effect on AMPA EPSCs in these cells, even at the highest concentration tested (80 mM). Ethanol significantly inhibited NMDA EPSCs in these neurons, but these responses were less sensitive to ethanol than KA EPSCs. These results suggest that in addition to its well-described depressant effect on NMDA receptor-mediated synaptic transmission, ethanol has an even greater inhibitory effect on glutamatergic synaptic transmission mediated by KA receptors in rat hippocampal CA3 pyramidal neurons.

Footnotes

    • Received December 4, 1998.
    • Accepted April 10, 1999.
  • Send reprint requests to: Jeff L. Weiner, Ph.D., Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157. E-mail:jweiner{at}wfubmc.edu

  • ↵1 Current Address: Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157.

  • This work was supported by National Institutes of Health Grants AA05425 (to J.L.W.), AA00227, and AA12251 (to C.F.V.) and by the Veterans Affairs Medical Research Service (to T.V.D.).

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 56 (1)
Molecular Pharmacology
Vol. 56, Issue 1
1 Jul 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ethanol Inhibition of Synaptically Evoked Kainate Responses in Rat Hippocampal CA3 Pyramidal Neurons
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Ethanol Inhibition of Synaptically Evoked Kainate Responses in Rat Hippocampal CA3 Pyramidal Neurons

Jeff L. Weiner, Thomas V. Dunwiddie and C. Fernando Valenzuela
Molecular Pharmacology July 1, 1999, 56 (1) 85-90; DOI: https://doi.org/10.1124/mol.56.1.85

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Ethanol Inhibition of Synaptically Evoked Kainate Responses in Rat Hippocampal CA3 Pyramidal Neurons

Jeff L. Weiner, Thomas V. Dunwiddie and C. Fernando Valenzuela
Molecular Pharmacology July 1, 1999, 56 (1) 85-90; DOI: https://doi.org/10.1124/mol.56.1.85
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • 6-Methylflavone Blocks Bitterness of Tenofovir
  • Positive Allosteric Modulation of the mGlu5 Receptor
  • Correction of mutant CNGA3 channel trafficking defect
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics