Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Alanine-Scanning Mutagenesis of Transmembrane Domain 6 of the M1 Muscarinic Acetylcholine Receptor Suggests that Tyr381 Plays Key Roles in Receptor Function

Stuart D. C. Ward, Carol A. M. Curtis and Edward C. Hulme
Molecular Pharmacology November 1999, 56 (5) 1031-1041; DOI: https://doi.org/10.1124/mol.56.5.1031
Stuart D. C. Ward
Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carol A. M. Curtis
Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward C. Hulme
Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Transmembrane domain 6 of the muscarinic acetylcholine (ACh) receptors is important in ligand binding and in the conformational transitions of the receptor but the roles of individual residues are poorly understood. We have carried out a systematic alanine-scanning mutagenesis study on residues Tyr381 to Val387 within the binding domain of the M1 muscarinic ACh receptor. The seven mutations were then analyzed to define the effects on receptor expression, agonist and antagonist binding, and signaling efficacy. Tyr381Ala produced a 40-fold reduction in ACh affinity and a 50-fold reduction in ACh-signaling efficacy. Leu386Ala had similar but smaller effects. Asn382Ala caused the largest inhibition of antagonist binding. The roles of the hydroxyl group and benzene ring of Tyr381 were probed further by comparative analysis of the Tyr381Phe and Tyr381Ala mutants using three series of ligands: ACh analogs, azanorbornane- and quinuclidine-based ligands, and atropine analogs. These data suggested that the hydroxyl group of Tyr381 is primarily involved in forming hydrogen bond interactions with the oxygen atoms present in the side chain of ACh. We propose that this interaction is established in the ground state and preserved in the activated state of the receptor. In contrast, the Tyr381 benzene ring may form a cation-π interaction with the positively charged head group of ACh that contributes to the activated state of the receptor but not the ground state. However, the hydroxyl group and benzene ring of Tyr381 both participate in interactions with azanorbornane- and quinuclidine-based ligands and atropine analogs in the ground state as well as the activated state of the receptor.

Footnotes

    • Received March 11, 1999.
    • Accepted July 30, 1999.
  • Send reprint requests to: Dr. E.C. Hulme, Division of Physical Biochemistry, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA UK. E-mail: ehulme{at}nimr.mrc.ac.uk

  • 1 This work was supported by the Medical Research Council (UK) and a Merck Sharp & Dohme collaborative studentship (S.D.C.W.).

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 56 (5)
Molecular Pharmacology
Vol. 56, Issue 5
1 Nov 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Alanine-Scanning Mutagenesis of Transmembrane Domain 6 of the M1 Muscarinic Acetylcholine Receptor Suggests that Tyr381 Plays Key Roles in Receptor Function
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Alanine-Scanning Mutagenesis of Transmembrane Domain 6 of the M1 Muscarinic Acetylcholine Receptor Suggests that Tyr381 Plays Key Roles in Receptor Function

Stuart D. C. Ward, Carol A. M. Curtis and Edward C. Hulme
Molecular Pharmacology November 1, 1999, 56 (5) 1031-1041; DOI: https://doi.org/10.1124/mol.56.5.1031

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Alanine-Scanning Mutagenesis of Transmembrane Domain 6 of the M1 Muscarinic Acetylcholine Receptor Suggests that Tyr381 Plays Key Roles in Receptor Function

Stuart D. C. Ward, Carol A. M. Curtis and Edward C. Hulme
Molecular Pharmacology November 1, 1999, 56 (5) 1031-1041; DOI: https://doi.org/10.1124/mol.56.5.1031
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics