Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Regulation of Rat Hepatic Hydroxysteroid Sulfotransferase (SULT2-40/41) Gene Expression by Glucocorticoids: Evidence for a Dual Mechanism of Transcriptional Control

Melissa Runge-Morris, Wei Wu and Thomas A. Kocarek
Molecular Pharmacology December 1999, 56 (6) 1198-1206; DOI: https://doi.org/10.1124/mol.56.6.1198
Melissa Runge-Morris
Institute of Chemical Toxicology, Wayne State University, Detroit, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei Wu
Institute of Chemical Toxicology, Wayne State University, Detroit, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas A. Kocarek
Institute of Chemical Toxicology, Wayne State University, Detroit, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glucocorticoid-inducible hydroxysteroid sulfotransferase (SULT2-40/41) gene transcription was investigated in primary cultured rat hepatocytes transiently transfected with a series of SULT2-40/41 5′-flanking region-luciferase reporter constructs, with emphasis on examining the functional role of an inverted repeat-0 nuclear receptor motif (IR0). Treatment of transfected cultures with any of four glucocorticoids activated luciferase expression from a construct containing 1938 base pairs (bp) of the SULT2-40/41 gene 5′-flanking sequence, whereas deletion of bp −227 to −158 (containing the IR0 motif) largely abolished the effect. On closer analysis, treatment of hepatocyte cultures with either of the potent glucocorticoids dexamethasone [strong cytochrome P-450 3A (CYP3A) inducer] or triamcinolone acetonide (weak CYP3A inducer) produced dose-dependent increases in luciferase activity when hepatocytes were transiently transfected with a construct containing as little as 158 bp of 5′-flanking sequence or containing a mutated IR0 motif. The dexamethasone dose-dependent increase in luciferase activity continued through a dose of 10−6 M when the transfected construct contained the IR0 motif, but was maximal at 10−7 M when the transfected construct lacked the IR0 motif. In contrast, triamcinolone acetonide-induced luciferase activity was maximal at a dose of 10−7 M, irrespective of the presence or absence of the IR0 motif. Coincubation of transfected hepatocytes with 10−8 M dexamethasone and the antiglucocorticoid RU486 inhibited luciferase expression. Luciferase induction by the prototypical CYP3A inducer pregnenolone 16α-carbonitrile was restricted to constructs containing the IR0 motif. These data suggest that glucocorticoid-inducible SULT2-40/41 gene expression occurs through a dual mechanism, whose components possibly involve the glucocorticoid receptor and the pregnane X receptor.

Footnotes

    • Received April 15, 1999.
    • Accepted September 14, 1999.
  • Send reprint requests to: Dr. Melissa Runge-Morris, Institute of Chemical Toxicology, Wayne State University, 2727 Second Ave., Detroit, MI 48102. E-mail:m.runge-morris{at}wayne.edu

  • This study was supported by National Institutes of Health Grants ES05823 (to M.-R.M.) and HL50710 (to T.A.K.), and by National Institute of Environmental Health Sciences Center Grant ES06639.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 56 (6)
Molecular Pharmacology
Vol. 56, Issue 6
1 Dec 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of Rat Hepatic Hydroxysteroid Sulfotransferase (SULT2-40/41) Gene Expression by Glucocorticoids: Evidence for a Dual Mechanism of Transcriptional Control
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Regulation of Rat Hepatic Hydroxysteroid Sulfotransferase (SULT2-40/41) Gene Expression by Glucocorticoids: Evidence for a Dual Mechanism of Transcriptional Control

Melissa Runge-Morris, Wei Wu and Thomas A. Kocarek
Molecular Pharmacology December 1, 1999, 56 (6) 1198-1206; DOI: https://doi.org/10.1124/mol.56.6.1198

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Regulation of Rat Hepatic Hydroxysteroid Sulfotransferase (SULT2-40/41) Gene Expression by Glucocorticoids: Evidence for a Dual Mechanism of Transcriptional Control

Melissa Runge-Morris, Wei Wu and Thomas A. Kocarek
Molecular Pharmacology December 1, 1999, 56 (6) 1198-1206; DOI: https://doi.org/10.1124/mol.56.6.1198
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics