Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Actions of Cannabinoids on Membrane Properties and Synaptic Transmission in Rat Periaqueductal Gray Neurons In Vitro

Christopher W. Vaughan, Mark Connor, Elena E. Bagley and MacDonald J. Christie
Molecular Pharmacology February 2000, 57 (2) 288-295;
Christopher W. Vaughan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Connor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elena E. Bagley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MacDonald J. Christie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The midbrain periaqueductal gray (PAG) is a major site of cannabinoid-mediated analgesia in the central nervous system. In the present study, we examined the actions of cannabinoids on rat PAG neurons in vitro. In brain slices, superfusion of the cannabinoid receptor agonist WIN55,212-2 inhibited electrically evoked inhibitory and excitatory postsynaptic currents in all PAG neurons. The endogenous cannabinoid anandamide inhibited evoked inhibitory postsynaptic currents in the presence of the anandamide transport inhibitor AM404, but not in its absence. The stable anandamide analog R1-methanandamide also inhibited evoked inhibitory postsynaptic currents. WIN55,212-2 reduced the rate of spontaneous miniature inhibitory postsynaptic currents in normal and Ca2+-free solutions, but had no effect on their amplitude distributions or kinetics. The WIN55,212-2-induced decrease in miniature inhibitory postsynaptic current rate was concentration dependent (EC50 = 520 nM). The effects of cannabinoids were reversed by the CB1 receptor antagonist SR141716. WIN55,212-2 produced no change in membrane current or conductance in PAG neurons in brain slices and had no effect on Ca2+-channel currents in acutely isolated PAG neurons. These findings suggest that cannabinoids act via CB1receptors to inhibit GABAergic and glutamatergic synaptic transmission in rat PAG, although the efficacy of endogenous cannabinoids is likely to be limited by uptake and breakdown. Like μ-opioids, cannabinoids act to reduce the probability of transmitter release from presynaptic terminals via a Ca2+-independent mechanism. In contrast to μ-opioids, cannabinoids have no direct postsynaptic actions on PAG neurons. Thus, cannabinoids and μ-opioids are likely to produce analgesia within PAG in part by different mechanisms.

Footnotes

  • Send reprint requests to: Dr. C.W. Vaughan, Department of Pharmacology, University of Sydney, Sydney, New South Wales 2006, Australia. E-mail: chrisv{at}pharmacol.usyd.edu.au

  • 1 This work was supported by the National Health and Medical Research Council of Australia and The Medical Foundation of The University of Sydney.

  • Abbreviations:
    Δ9-THC
    Δ9-tetrahydrocannabinol
    ACSF
    artificial cerebrospinal fluid
    eEPSC
    electrically evoked excitatory postsynaptic current
    eIPSC
    electrically evoked inhibitory postsynaptic current
    PAG
    periaqueductal gray
    mIPSC
    spontaneous miniature IPSC
    RVM
    rostral ventromedial medulla
    CNQX
    6-cyano-7-nitroquinoxaline-2,3-dione
    TTX
    tetrodotoxin
    IBa
    calcium channel current
    • Received July 28, 1999.
    • Accepted October 28, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 57 (2)
Molecular Pharmacology
Vol. 57, Issue 2
1 Feb 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Actions of Cannabinoids on Membrane Properties and Synaptic Transmission in Rat Periaqueductal Gray Neurons In Vitro
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Actions of Cannabinoids on Membrane Properties and Synaptic Transmission in Rat Periaqueductal Gray Neurons In Vitro

Christopher W. Vaughan, Mark Connor, Elena E. Bagley and MacDonald J. Christie
Molecular Pharmacology February 1, 2000, 57 (2) 288-295;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Actions of Cannabinoids on Membrane Properties and Synaptic Transmission in Rat Periaqueductal Gray Neurons In Vitro

Christopher W. Vaughan, Mark Connor, Elena E. Bagley and MacDonald J. Christie
Molecular Pharmacology February 1, 2000, 57 (2) 288-295;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics