Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

MDM2 Mediated Nuclear Exclusion of p53 Attenuates Etoposide-Induced Apoptosis in Neuroblastoma Cells

Ana M. Rodriguez-Lopez, Dia Xenaki, Tim O. B. Eden, John A. Hickman and Christine M. Chresta
Molecular Pharmacology January 2001, 59 (1) 135-143; DOI: https://doi.org/10.1124/mol.59.1.135
Ana M. Rodriguez-Lopez
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dia Xenaki
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tim O. B. Eden
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John A. Hickman
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christine M. Chresta
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The p53 gene in neuroblastoma tumors (NB) is rarely mutated but the protein accumulates in the cytoplasm. Because p53 can mediate the cytotoxic effects of chemotherapeutic agents, it is important to determine whether accumulation of p53 in the cytoplasm impairs p53 function. Data presented here indicate that hyperactive nuclear export of p53 suppresses etoposide-induced apoptosis but does not prevent growth arrest. We compared p53 function in a pair of NB subclones. Our data show etoposide induces complete trans-location of p53 to the nucleus and activation of apoptosis in the neuroblastic NB cell line SH-SY5Y (N-type), which expresses low levels of MDM2. However, in Schwann cell-like SH-EP1 cells (S-type), which have up to 10-fold higher levels of MDM2, p53 accumulates in the cytoplasm and the cells are extremely resistant to etoposide-induced apoptosis. Notably, when MDM2 expression is inhibited in S-type cells, with a phosphorothioated antisense oligonucleotide (AS5), then p53 accumulates in the nucleus and the SH-EP1 cells undergo apoptosis. Surprisingly, induction of p21 and G1-arrest are not attenuated in S-type cells, despite the predominantly cytoplasmic location of p53. Whereas, G1-arrest is attenuated in the SH-SY5Y cells, which have high levels of nuclear p53. Taken together, these findings suggest attenuation of G1-arrest is related to the differentiation status of neuroblastomas and occurs downstream of p53 nuclear accumulation. These results demonstrate for the first time that hyperactive nuclear export of p53 attenuates chemotherapy-induced apoptosis in NB cells, and our findings suggest that inhibitors of MDM2 may enhance the therapeutic efficacy of etoposide by promoting apoptosis rather than trans-differentiation.

Footnotes

    • Received June 21, 2000.
    • Accepted October 2, 2000.
  • Send reprint requests to: Dr. C. M. Chresta, The School of Pharmacy, University of Manchester, Manchester, M13 9PL, U.K. E-mail: cchresta{at}man.ac.uk

  • This study was funded by the Friends of Rosie Childrens Cancer Research Fund.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 59 (1)
Molecular Pharmacology
Vol. 59, Issue 1
1 Jan 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
MDM2 Mediated Nuclear Exclusion of p53 Attenuates Etoposide-Induced Apoptosis in Neuroblastoma Cells
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

MDM2 Mediated Nuclear Exclusion of p53 Attenuates Etoposide-Induced Apoptosis in Neuroblastoma Cells

Ana M. Rodriguez-Lopez, Dia Xenaki, Tim O. B. Eden, John A. Hickman and Christine M. Chresta
Molecular Pharmacology January 1, 2001, 59 (1) 135-143; DOI: https://doi.org/10.1124/mol.59.1.135

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

MDM2 Mediated Nuclear Exclusion of p53 Attenuates Etoposide-Induced Apoptosis in Neuroblastoma Cells

Ana M. Rodriguez-Lopez, Dia Xenaki, Tim O. B. Eden, John A. Hickman and Christine M. Chresta
Molecular Pharmacology January 1, 2001, 59 (1) 135-143; DOI: https://doi.org/10.1124/mol.59.1.135
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics