Abstract
Polyamines are known to be essential for normal cell growth and differentiation. However, despite numerous studies, specific cellular functions of polyamines in general and individual polyamines in particular have remained only tentative, because of a lack of appropriate cell lines in which genes of polyamine-synthesizing enzymes have been disrupted by gene targeting. With the use of homologous recombination technique, we disrupted the gene encoding spermine synthase in mouse embryonic stem cells. The spermine synthase gene is located on X chromosome in mouse and, because the cells used in this study were of XY karyotype, a single targeting event was sufficient to result in null genotype. The targeted cells did not have any measurable spermine synthase activity and were totally devoid of the polyamine spermine. Spermine deficiency led to a substantial increase in spermidine content, but the total polyamine content was nearly unchanged. Despite the lack of spermine, these cells displayed a growth rate that was nearly similar to that of the parental cells and showed no overt morphological changes. However, the spermine-deficient cells were significantly more sensitive to the growth inhibition exerted by 2-difluoromethylornithine, an inhibitor of ornithine decarboxylase. Similarly, methylglyoxal bis(guanylhydrazone), an inhibitor ofS-adenosylmethionine decarboxylase, and diethylnorspermine, a polyamine analog, although exerting cytostatic growth inhibition on wild-type cells, were clearly cytotoxic to the spermine-deficient cells. The spermine-deficient cells were also much more sensitive to etoposide-induced DNA damage than their wild-type counterparts.
Footnotes
- Received June 8, 2000.
- Accepted October 11, 2000.
-
Send reprint requests to: Dr. Veli-Pekka Korhonen, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland. Email:vkorhone{at}messi.uku.fi
-
This work was supported in part by the Academy of Finland and Grant CA76428 from the National Cancer Institute, National Institutes of Health.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|