Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Mutation of Gln125 to Asn Selectively Abolishes the Thymidylate Kinase Activity of Herpes Simplex Virus Type 1 Thymidine Kinase

Bart Degrève, Robert Esnouf, Erik De Clercq and Jan Balzarini
Molecular Pharmacology February 2001, 59 (2) 285-293; DOI: https://doi.org/10.1124/mol.59.2.285
Bart Degrève
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert Esnouf
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erik De Clercq
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan Balzarini
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The broad substrate specificity of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) has provided the basis for selective antiherpetic therapy and, more recently, suicide gene therapy for the treatment of cancer. We have now constructed an HSV-1 TK mutant enzyme, in which an asparagine (N) residue is substituted for glutamine (Q) at position 125, and have evaluated the effect of this amino acid change on enzymatic activity. In marked contrast with wild-type HSV-1 TK, which displays both thymidine kinase and thymidylate kinase activities, the HSV-1 TK(Q125N) mutant was unable to phosphorylate pyrimidine nucleoside monophosphates but retained significant phosphorylation activity for thymidine and a series of antiherpetic pyrimidine and purine nucleoside analogs. The abrogation of HSV-1 TK-associated thymidylate kinase activity resulted in a 100-fold accumulation of the monophosphate form of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) in osteosarcoma cells transfected with the HSV-1 TK(Q125N) gene compared with osteosarcoma cells expressing wild-type HSV-1 TK. BVDU monophosphate accumulation gave rise to a much greater inhibition of cellular thymidylate synthase in HSV-1 TK(Q125N) gene-transfected cells than wild-type HSV-1 TK gene-transfected osteosarcoma tumor cells without significantly changing the cytostatic potency of BVDU for the HSV-1 TK gene-transfected tumor cells. Accordingly, the presence of the Q125N mutation in HSV-1 TK gene-transfected tumor cells was found to result in a multilog decrease in the cytostatic activity of those pyrimidine nucleoside analogs that in their monophosphate form do not have marked affinity for thymidylate synthase [i.e., 1-β-d-arabinofuranosylthymine and (E)-5-(2-bromovinyl)-1-β-d-arabinofuranosyluracil].

Footnotes

    • Received July 26, 2000.
    • Accepted November 3, 2000.
  • Send reprint requests to: Dr. Jan Balzarini, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium. E-mail:jan.balzarini{at}rega.kuleuven.ac.be

  • This work was supported by Project 00/12 from the Flemish “Geconcerteerde Onderzoeksacties”, and the “Belgische Federatie tegen kanker”. B.D. is the recipient of a fellowship from the “Belgische Federatie tegen kanker”.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 59 (2)
Molecular Pharmacology
Vol. 59, Issue 2
1 Feb 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutation of Gln125 to Asn Selectively Abolishes the Thymidylate Kinase Activity of Herpes Simplex Virus Type 1 Thymidine Kinase
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Mutation of Gln125 to Asn Selectively Abolishes the Thymidylate Kinase Activity of Herpes Simplex Virus Type 1 Thymidine Kinase

Bart Degrève, Robert Esnouf, Erik De Clercq and Jan Balzarini
Molecular Pharmacology February 1, 2001, 59 (2) 285-293; DOI: https://doi.org/10.1124/mol.59.2.285

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Mutation of Gln125 to Asn Selectively Abolishes the Thymidylate Kinase Activity of Herpes Simplex Virus Type 1 Thymidine Kinase

Bart Degrève, Robert Esnouf, Erik De Clercq and Jan Balzarini
Molecular Pharmacology February 1, 2001, 59 (2) 285-293; DOI: https://doi.org/10.1124/mol.59.2.285
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
  • Allosteric Modulation of Metabotropic Glutamate Receptor 1
  • Mechanism of Selective Action of Paraherquamide A
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics