Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Role of NF-κB as a Survival Factor in Environmental Chemical-Induced Pre-B Cell Apoptosis

Koren K. Mann, Stefan Doerre, Jennifer J. Schlezinger, David H. Sherr and Shafat Quadri
Molecular Pharmacology February 2001, 59 (2) 302-309; DOI: https://doi.org/10.1124/mol.59.2.302
Koren K. Mann
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefan Doerre
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer J. Schlezinger
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David H. Sherr
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shafat Quadri
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental chemicals that suppress the immune system at multiple levels, including at the level of B cell development in the bone marrow microenvironment. Specifically, PAH induce preB cell apoptosis in primary bone marrow cultures and in cocultures of an early preB cell line (BU-11) and a bone marrow stromal cell line (BMS2). Previous studies focused on the molecular mechanisms through which PAH induce stromal cells to deliver an apoptosis signal to adjacent preB cells. Apoptosis signaling within the preB cell itself was not investigated. Here, the role of NF-κB, a lymphocyte survival factor, in PAH-induced preB cell apoptosis was assessed. Analysis of DNA-binding proteins extracted from the nuclei of untreated BU-11 cells indicated DNA-binding complexes comprising NF-κB subunits p50, c-Rel, and/or Rel A. NF-κB down-regulation with previously described inhibitors induced BU-11 cell apoptosis, demonstrating that the default apoptosis pathway blocked by NF-κB is functional at this early stage in B cell development. Similarly, exposure of BU-11/BMS2 cocultures to 7,12-dimethylbenz[a]anthracene (DMBA), a prototypic PAH, down-regulated nuclear Rel A and c-Rel before overt apoptosis. Finally, ectopic expression of Rel A or c-Rel rescued BU-11 cells from DMBA-induced apoptosis. These results extend previous observations by demonstrating that 1) NF-κB is a survival factor at an earlier stage of B cell development than previously appreciated and 2) NF-κB down-regulation is likely to be part of the molecular mechanism resulting in PAH-induced preB cell apoptosis. These results suggest nonclonally restricted, PAH-mediated suppression of B lymphopoiesis.

Footnotes

    • Received May 8, 2000.
    • Accepted November 8, 2000.
  • Send reprint requests to: David H. Sherr, Ph.D., Boston University School of Public Health, 801 Albany St. Rm S105, Boston, MA 02118. E-mail: dsherr{at}bu.edu

  • Supported by National Institutes of Health Grant RO1-ES06086, Superfund Basic Research Grant #1P42ES 07381, an EPA STAR fellowship to K.K.M., and an NRSA fellowship to J.J.S.

  • D.H.S. and S.Q. contributed equally to this project.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 59 (2)
Molecular Pharmacology
Vol. 59, Issue 2
1 Feb 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Role of NF-κB as a Survival Factor in Environmental Chemical-Induced Pre-B Cell Apoptosis
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Role of NF-κB as a Survival Factor in Environmental Chemical-Induced Pre-B Cell Apoptosis

Koren K. Mann, Stefan Doerre, Jennifer J. Schlezinger, David H. Sherr and Shafat Quadri
Molecular Pharmacology February 1, 2001, 59 (2) 302-309; DOI: https://doi.org/10.1124/mol.59.2.302

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Role of NF-κB as a Survival Factor in Environmental Chemical-Induced Pre-B Cell Apoptosis

Koren K. Mann, Stefan Doerre, Jennifer J. Schlezinger, David H. Sherr and Shafat Quadri
Molecular Pharmacology February 1, 2001, 59 (2) 302-309; DOI: https://doi.org/10.1124/mol.59.2.302
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics