Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Modulation of Cisplatin Cytotoxicity and Cisplatin-Induced DNA Cross-Links in HepG2 Cells by Regulation of Glutathione-Related Mechanisms

Kai Zhang, May Chew, Er Bin Yang, Kim Ping Wong and Peter Mack
Molecular Pharmacology April 2001, 59 (4) 837-843; DOI: https://doi.org/10.1124/mol.59.4.837
Kai Zhang
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
May Chew
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Er Bin Yang
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kim Ping Wong
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Mack
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glutathione (GSH), glutathione S-transferase (GST), and glutathione conjugate export pump (GS-X pump) have been shown to participate collectively in the detoxification of many anticancer drugs, including cisplatin. Identification and regulation of the rate-limiting step in the overall system for cisplatin detoxification is of crucial importance for sensitization of human tumor cells to cisplatin. In this study, the GSH content, GST activity, and GS-X pump activity were regulated separately to examine effects of the regulation on cisplatin cytotoxicity and cisplatin-induced DNA interstrand cross-links (ICL) in HepG2 cells. Seventy-percent depletion of GSH by buthionine sulfoximine (BSO) and 50% increase of GSH by monoethyl GSH ester (GSHe) potentiated and decreased cisplatin cytotoxicity, respectively. This was reflected by a significant decrease and increase of their respective IC50 values by 62 and 107%. Cisplatin-induced ICL was also potentiated by depletion of GSH by BSO and decreased by enrichment of GSH by GSHe, as shown by a 125% increase and a 34% decrease of cross-linked DNA compared with control samples exposed to cisplatin alone (p = 0.008 and 0.03, respectively). On the other hand, inhibition of GST and GS-X pump by ethacrynic acid, quercetin, tannic acid, and indomethacin at concentrations that inhibited activities of GST and GS-X pump by more than 50% had no significant effects on cisplatin cytotoxicity and cisplatin-induced DNA ICL in these cells. The results showed that of the parameters measured, intracellular GSH seems to be the rate-limiting factor, and its regulation would provide a more promising strategy for sensitization of human liver tumor cells to cisplatin.

Footnotes

    • Received August 14, 2000.
    • Accepted December 22, 2000.
  • Send reprint requests to: Dr. Zhang Kai, Department of Experimental Surgery, BLK 9, Level 2, Singapore General Hospital, Outram Road, Singapore 169608. E-mail:geskai{at}sgh.gov.sg

  • This work was supported by a research grant (NMRC 0261/1997) from National Medical Research Council of Singapore.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 59 (4)
Molecular Pharmacology
Vol. 59, Issue 4
1 Apr 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modulation of Cisplatin Cytotoxicity and Cisplatin-Induced DNA Cross-Links in HepG2 Cells by Regulation of Glutathione-Related Mechanisms
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Modulation of Cisplatin Cytotoxicity and Cisplatin-Induced DNA Cross-Links in HepG2 Cells by Regulation of Glutathione-Related Mechanisms

Kai Zhang, May Chew, Er Bin Yang, Kim Ping Wong and Peter Mack
Molecular Pharmacology April 1, 2001, 59 (4) 837-843; DOI: https://doi.org/10.1124/mol.59.4.837

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Modulation of Cisplatin Cytotoxicity and Cisplatin-Induced DNA Cross-Links in HepG2 Cells by Regulation of Glutathione-Related Mechanisms

Kai Zhang, May Chew, Er Bin Yang, Kim Ping Wong and Peter Mack
Molecular Pharmacology April 1, 2001, 59 (4) 837-843; DOI: https://doi.org/10.1124/mol.59.4.837
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics