Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Role of a Conserved Inter-Transmembrane Domain Interface in Regulating α2a-Adrenergic Receptor Conformational Stability and Cell-Surface Turnover

Matthew H. Wilson, Hilary A. Highfield and Lee E. Limbird
Molecular Pharmacology April 2001, 59 (4) 929-938; DOI: https://doi.org/10.1124/mol.59.4.929
Matthew H. Wilson
Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hilary A. Highfield
Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lee E. Limbird
Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Functional and structural data from G protein-coupled receptors (GPCR) predict that transmembrane-domain (TM)2 is adjacent to TM7 within the GPCR structure, and that within this interface a conserved aspartate in TM2 and a conserved asparagine in TM7 exist in close proximity. Mutation at this D79(TM2)-N422(TM7) interface in the α2A-adrenergic receptor (α2AAR) affects not only receptor activation but also cell-surface residence time and conformational stability. Mutation at TM2(D79N) reduces allosteric modulation by Na+ and receptor activation more dramatically than affecting cell-surface receptor turnover and conformational stability, whereas mutation at TM7(N422D) creates profound conformational instability and more rapid degradation of receptor from the surface of cells despite receptor activation and allosteric modulation properties that mirror a wild-type receptor. Double mutation of TM2 and 7(D79N/N422D) reveals phenotypes for receptor activation and conformational stability intermediate between the wild-type and singly mutated α2AAR. Additionally, the structural placement of a negative charge at this TM2/TM7 interface is necessary but not sufficient for receptor structural stability, because mislocalization of the negative charge in either the D79Eα2AAR (which extends the charge out one methylene group) or the D79N/N422Dα2AAR (placing the charge in TM7 instead of TM2) results in conformational lability in detergent solution and more rapid cell-surface receptor clearance. These studies suggest that this interface is important in regulating receptor cell-surface residence time and conformational stability in addition to its previously recognized role in receptor activation.

Footnotes

    • Received October 16, 2000.
    • Accepted January 3, 2001.
  • Send reprint requests to: Dr. Lee E. Limbird, Department of Pharmacology, 468 MRB I, Vanderbilt University Medical Center, Nashville, Tennessee. E-mail:lee.limbird{at}mcmail.vanderbilt.edu

  • This work was supported by National Institutes of Health Grant HL43671 to L.E.L. and Medical Scientist Training Program Grant GM07347 for M.H.W.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 59 (4)
Molecular Pharmacology
Vol. 59, Issue 4
1 Apr 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Role of a Conserved Inter-Transmembrane Domain Interface in Regulating α2a-Adrenergic Receptor Conformational Stability and Cell-Surface Turnover
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Role of a Conserved Inter-Transmembrane Domain Interface in Regulating α2a-Adrenergic Receptor Conformational Stability and Cell-Surface Turnover

Matthew H. Wilson, Hilary A. Highfield and Lee E. Limbird
Molecular Pharmacology April 1, 2001, 59 (4) 929-938; DOI: https://doi.org/10.1124/mol.59.4.929

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Role of a Conserved Inter-Transmembrane Domain Interface in Regulating α2a-Adrenergic Receptor Conformational Stability and Cell-Surface Turnover

Matthew H. Wilson, Hilary A. Highfield and Lee E. Limbird
Molecular Pharmacology April 1, 2001, 59 (4) 929-938; DOI: https://doi.org/10.1124/mol.59.4.929
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Michaelis Menten quantification of GPCR-G protein signalling
  • Human mAb 3F1 targeting the fuctional epitopes of Siglec-15
  • The regulation and mechanisms of ImKTX58 on KV1.3 channel
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics