Abstract
We have previously shown that secreted phospholipases A2(sPLA2) from bee and snake venoms have potent anti-human immunodeficiency virus (HIV) activity (Fenard et al., 1999). These sPLA2s block HIV-1 entry into host cells through a mechanism linked to sPLA2 binding to cells. In this study, 12 synthetic peptides derived from bee venom sPLA2(bvPLA2) have been tested for inhibition of HIV-1 infection. The p3bv peptide (amino acids 21 to 35 of bvPLA2) was found to inhibit the replication of T-lymphotropic (T-tropic) HIV-1 isolates (ID50 = 2 μM) but was without effect on monocytotropic (M-tropic) HIV-1 isolates. p3bv was also found capable of preventing the cell-cell fusion process mediated by T-tropic HIV-1 envelope. Finally, p3bv can inhibit the binding of radiolabeled stromal cell-derived factor (SDF)-1α, the natural ligand of CXCR4, and the binding of 12G5, an anti-CXCR4 monoclonal antibody. Taken together, these results indicate that p3bv blocks the replication of T-tropic HIV-1 strains by interacting with CXCR4. Its mechanism of action however appears distinct from that of bvPLA2 because the latter inhibits replication of both T-tropic and M-tropic isolates and does not compete with SDF-1α and 12G5 binding to CXCR4.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|