Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Loss of CYP1A1 Messenger RNA Expression Due to Nonsense-Mediated Decay

Xiang-Dong Lei, Brett Chapman and Oliver Hankinson
Molecular Pharmacology August 2001, 60 (2) 388-393; DOI: https://doi.org/10.1124/mol.60.2.388
Xiang-Dong Lei
Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, University of California, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brett Chapman
Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, University of California, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oliver Hankinson
Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, University of California, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Clones of the mouse hepatoma cell line Hepa1c1c7 (Hepa-1) with lesions in the Cyp1a1 gene were isolated previously. A subset of these clones fails to express CYP1A1 mRNA even when treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin, which induces this mRNA in wild-type Hepa-1 cells. The current investigation sought an explanation for this phenotype in one of these clones, c33. Loss of mRNA expression in c33 was shown to be caused by mutational changes in the Cyp1a1 gene rather than by its epigenetic silencing. No mutations were identified in the 5′ flanking region of the Cyp1a1 gene, containing the promoter and dioxin-responsive enhancer sequences. A single nucleotide insertion occurred at nucleotide 418 in the coding region of oneCyp1a1 allele, and a single nucleotide insertion occurred at nucleotide 465 in the other allele in c33. These sequence alterations were confirmed in the genomic DNA of the clone. Both insertions generate a premature termination codon at codon 172. This termination codon occurs in a position within the intron/exon structure of the Cyp1a1 gene such that the encoded mRNA should be subject to “nonsense-mediated decay” (NMD). Inhibition of protein synthesis is known to reverse NMD. The protein synthesis inhibitors cycloheximide and puromycin fully restored CYP1A1 mRNA expression to c33 cells, supporting the notion that NMD degrades CYP1A1 mRNA in this strain. The mutations identified in the coding region of c33 provide an explanation, therefore, for its loss of both CYP1A1 enzymatic activity and inducible CYP1A1 mRNA expression.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 60 (2)
Molecular Pharmacology
Vol. 60, Issue 2
1 Aug 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Loss of CYP1A1 Messenger RNA Expression Due to Nonsense-Mediated Decay
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Loss of CYP1A1 Messenger RNA Expression Due to Nonsense-Mediated Decay

Xiang-Dong Lei, Brett Chapman and Oliver Hankinson
Molecular Pharmacology August 1, 2001, 60 (2) 388-393; DOI: https://doi.org/10.1124/mol.60.2.388

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Loss of CYP1A1 Messenger RNA Expression Due to Nonsense-Mediated Decay

Xiang-Dong Lei, Brett Chapman and Oliver Hankinson
Molecular Pharmacology August 1, 2001, 60 (2) 388-393; DOI: https://doi.org/10.1124/mol.60.2.388
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
  • TRPV3 and TRPV4 Channels Coassemble into Heterotetramers
  • Secretin Amino-Terminal Structure-Activity Relationships and Complementary Mutagenesis at the Site of Docking to the Secretin Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics