Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Rapid CommunicationAccelerated Communication

Monitoring the Activation State of the Insulin Receptor Using Bioluminescence Resonance Energy Transfer

Nicolas Boute, Karine Pernet and Tarik Issad
Molecular Pharmacology October 2001, 60 (4) 640-645;
Nicolas Boute
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karine Pernet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tarik Issad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have developed a procedure based on bioluminescence resonance energy transfer (BRET) to monitor the activation state of the insulin receptor in vitro. Human insulin receptor cDNA was fused to eitherRenilla luciferase (Rluc) or enhanced yellow fluorescent protein (EYFP) coding sequences. Fusion insulin receptors were partially purified by wheat-germ lectin chromatography from human embryonic kidney 293 cells cotransfected with these constructs. The conformational change induced by insulin on its receptor could be detected as an energy transfer (BRET signal) between Rluc and EYFP. BRET signal parallels insulin-induced autophosphorylation of the fusion receptor. Dose-dependent effects of insulin, insulin-like growth factor 1, and epidermal growth factor on BRET signal are in agreement with known pharmacological properties of these ligands. Moreover, antibodies that activate or inhibit the autophosphorylation of the receptor have similar effects on BRET signal. This method allows for rapid analysis of the effects of agonists on insulin receptor activity and could therefore be used in a high-throughput screening test for discovery of molecules with insulin-like properties.

Footnotes

  • This work was supported the Center National de la Recherche Scientifique, the Association pour la Recherche sur le Cancer, the Ligue contre le Cancer, and by a Roche-Pharma–Association de Langue Française d'Etude du Diabète et des Maladies Métaboliques) research grant.

  • Abbreviations:
    BRET
    bioluminescence resonance energy transfer
    EYFP
    enhanced yellow fluorescent protein
    Rluc
    Renilla luciferase
    HEK
    human embryonic kidney
    MOPS
    4-morpholinepropanesulfonic acid
    WGL
    wheat-germ lectin
    mBU
    milliBRET unit
    IR
    insulin receptor
    IGF
    insulin-like growth factor
    EGF
    epidermal growth factor
    • Received May 7, 2001.
    • Accepted June 15, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 60 (4)
Molecular Pharmacology
Vol. 60, Issue 4
1 Oct 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Monitoring the Activation State of the Insulin Receptor Using Bioluminescence Resonance Energy Transfer
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationAccelerated Communication

Monitoring the Activation State of the Insulin Receptor Using Bioluminescence Resonance Energy Transfer

Nicolas Boute, Karine Pernet and Tarik Issad
Molecular Pharmacology October 1, 2001, 60 (4) 640-645;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationAccelerated Communication

Monitoring the Activation State of the Insulin Receptor Using Bioluminescence Resonance Energy Transfer

Nicolas Boute, Karine Pernet and Tarik Issad
Molecular Pharmacology October 1, 2001, 60 (4) 640-645;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • GABAA Receptor Desensitization by Low GABA
  • Structure of the Diltiazem Receptor Site on Calcium Channels
  • 5-HT and Sleep
Show more Accelerated Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics