Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Vectorial Transport by Double-Transfected Cells Expressing the Human Uptake Transporter SLC21A8 and the Apical Export Pump ABCC2

Yunhai Cui, Jörg König and Dietrich Keppler
Molecular Pharmacology November 2001, 60 (5) 934-943; DOI: https://doi.org/10.1124/mol.60.5.934
Yunhai Cui
Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jörg König
Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dietrich Keppler
Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Vectorial transport of endogenous substances, drugs, and toxins is an important function of polarized cells. We have constructed a double-transfected Madin-Darby canine kidney (MDCK) cell line permanently expressing a recombinant uptake transporter for organic anions in the basolateral membrane and an ATP-dependent export pump for anionic conjugates in the apical membrane. Basolateral uptake was mediated by the human organic anion transporter 8 (OATP8; symbol SLC21A8) and subsequent apical export by the multidrug resistance protein 2 (MRP2; symbol ABCC2). Under physiological conditions, both transport proteins are strongly expressed in hepatocytes and contribute to the hepatobiliary elimination of organic anions. Expression and localization of OATP8 and MRP2 in MDCK cells growing on Transwell membrane inserts was demonstrated by immunoblotting and confocal laser scanning microscopy. 3H-Labeled sulfobromophthalein (BSP) was a substrate for both transport proteins and was transferred from the basolateral to the apical compartment at a rate at least six times faster by double-transfected MDCK-MRP2/OATP8 cells than by single-transfected MDCK-OATP8 or MDCK-MRP2 cells. Vectorial transport at a much higher rate by double-transfected than by single-transfected cells was also observed for the 3H-labeled substrates leukotriene C4, 17β-glucuronosyl estradiol, and dehydroepiandrosterone sulfate, for the fluorescent anionic substrate fluo-3, and for the antibiotic rifampicin. Inhibition studies indicated that intracellular formation ofS-(2,4-dinitrophenyl)-glutathione from 2,4-chlorodinitrobenzene selectively inhibits the transcellular transport of [3H]BSP at the site of MRP2-mediated export. The double-transfected cells provide a useful system for the identification of transport substrates and transport inhibitors including drug candidates.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 60 (5)
Molecular Pharmacology
Vol. 60, Issue 5
1 Nov 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Vectorial Transport by Double-Transfected Cells Expressing the Human Uptake Transporter SLC21A8 and the Apical Export Pump ABCC2
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Vectorial Transport by Double-Transfected Cells Expressing the Human Uptake Transporter SLC21A8 and the Apical Export Pump ABCC2

Yunhai Cui, Jörg König and Dietrich Keppler
Molecular Pharmacology November 1, 2001, 60 (5) 934-943; DOI: https://doi.org/10.1124/mol.60.5.934

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Vectorial Transport by Double-Transfected Cells Expressing the Human Uptake Transporter SLC21A8 and the Apical Export Pump ABCC2

Yunhai Cui, Jörg König and Dietrich Keppler
Molecular Pharmacology November 1, 2001, 60 (5) 934-943; DOI: https://doi.org/10.1124/mol.60.5.934
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics