Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Potent Inhibition of Telomerase by Small-Molecule Pentacyclic Acridines Capable of Interacting with G-Quadruplexes

Sharon M. Gowan, Robert Heald, Malcolm F. G. Stevens and Lloyd R. Kelland
Molecular Pharmacology November 2001, 60 (5) 981-988; DOI: https://doi.org/10.1124/mol.60.5.981
Sharon M. Gowan
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert Heald
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Malcolm F. G. Stevens
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lloyd R. Kelland
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A novel pentacyclic acridine, 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4), has been identified as a potent inhibitor of telomerase in the cell-free telomeric repeat amplification protocol (TRAP). Modeling and biophysical studies suggest that RHPS4 inhibits telomerase through stabilization of four-stranded G-quadruplex structures formed by single-stranded telomeric DNA. In contrast to G-quadruplex interactive telomerase inhibitors described previously, RHPS4 inhibited telomerase at submicromolar levels (50% inhibition in the TRAP assay at 0.33 ± 0.13 μM). Moreover, RHPS4 exhibited a wide differential between this potent inhibition of telomerase and acute cellular cytotoxicity (mean IC50 value of 7.02 μM in 4-day growth inhibition assay). RHPS4, when added to 21NT breast cancer cells at nonacute cytotoxic concentrations (200 nM) every 3 to 4 days, induced a marked cessation in cell growth after 15 days. Similar effects were observed using another cell line possessing relatively short telomeres, A431 human vulval carcinoma cells, but not in a human ovarian carcinoma cell line (SKOV-3) possessing relatively long telomeres. In 21NT cells, growth cessation was accompanied by an increase in cells in the G2/M phase of the cell cycle, a reduction in cellular telomerase activity, and a lower expression of the hTERT gene. These effects occurred in the absence of a detectable reduction in telomere length as measured by slot blotting. RHPS4 also induced a cessation of growth of GM847 cells that maintain telomeres by a nontelomerase alternative mechanism for lengthening telomeres (ALT) after 15 days. RHPS4 represents a promising G-quadruplex interactive small molecule that is a potent cell-free inhibitor of human telomerase and induces growth inhibitory effects in human tumor cell lines after prolonged (2-week) exposure to nonacute cytotoxic drug concentrations.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 60 (5)
Molecular Pharmacology
Vol. 60, Issue 5
1 Nov 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Potent Inhibition of Telomerase by Small-Molecule Pentacyclic Acridines Capable of Interacting with G-Quadruplexes
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Potent Inhibition of Telomerase by Small-Molecule Pentacyclic Acridines Capable of Interacting with G-Quadruplexes

Sharon M. Gowan, Robert Heald, Malcolm F. G. Stevens and Lloyd R. Kelland
Molecular Pharmacology November 1, 2001, 60 (5) 981-988; DOI: https://doi.org/10.1124/mol.60.5.981

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Potent Inhibition of Telomerase by Small-Molecule Pentacyclic Acridines Capable of Interacting with G-Quadruplexes

Sharon M. Gowan, Robert Heald, Malcolm F. G. Stevens and Lloyd R. Kelland
Molecular Pharmacology November 1, 2001, 60 (5) 981-988; DOI: https://doi.org/10.1124/mol.60.5.981
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics