Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Structural Basis of Differences in Isoform-Specific Gating and Lidocaine Block between Cardiac and Skeletal Muscle Sodium Channels

Ronald A. Li, Irene L. Ennis, Gordon F. Tomaselli and Eduardo Marbán
Molecular Pharmacology January 2002, 61 (1) 136-141; DOI: https://doi.org/10.1124/mol.61.1.136
Ronald A. Li
Institute of Molecular Cardiobiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Irene L. Ennis
Institute of Molecular Cardiobiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon F. Tomaselli
Institute of Molecular Cardiobiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eduardo Marbán
Institute of Molecular Cardiobiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Voltage-gated Na+ channels underlie rapid conduction in heart and skeletal muscle. Cardiac sodium channels open and close over more negative potentials than do skeletal muscle sodium channels; heart channels are also more sensitive to lidocaine block. The structural basis of these differences is poorly understood. We mutated nine isoform-specific μ1 (rat skeletal muscle) channel residues in domain IV to those at equivalent locations in hH1 (human cardiac) channels. Channel constructs were expressed in tsA-201 cells and screened for changes in gating and lidocaine sensitivity. Only L1373E, located in the linker between the S1 and S2 transmembrane segments, shifted activation gating and use-dependent block by lidocaine toward that seen in hH1. The converse mutation, hH1-E1555L, shifted the phenotype of hH1 to resemble that of μ1. Therefore, we identified a previously unsuspected glutamate-to-leucine isoform-specific variant site (i.e., 1555 in hH1 and 1373 in μ1) that significantly influences gating and drug block in sodium channels. The identification of the residue at this position plays a major role in shaping the responses of sodium channels to voltage and to lidocaine, helping to rationalize the distinctive behavior of cardiac sodium channels.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 61 (1)
Molecular Pharmacology
Vol. 61, Issue 1
1 Jan 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structural Basis of Differences in Isoform-Specific Gating and Lidocaine Block between Cardiac and Skeletal Muscle Sodium Channels
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Structural Basis of Differences in Isoform-Specific Gating and Lidocaine Block between Cardiac and Skeletal Muscle Sodium Channels

Ronald A. Li, Irene L. Ennis, Gordon F. Tomaselli and Eduardo Marbán
Molecular Pharmacology January 1, 2002, 61 (1) 136-141; DOI: https://doi.org/10.1124/mol.61.1.136

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Structural Basis of Differences in Isoform-Specific Gating and Lidocaine Block between Cardiac and Skeletal Muscle Sodium Channels

Ronald A. Li, Irene L. Ennis, Gordon F. Tomaselli and Eduardo Marbán
Molecular Pharmacology January 1, 2002, 61 (1) 136-141; DOI: https://doi.org/10.1124/mol.61.1.136
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics