Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Allosteric Site on Muscarinic Acetylcholine Receptors: A Single Amino Acid in Transmembrane Region 7 Is Critical to the Subtype Selectivities of Caracurine V Derivatives and Alkane-Bisammonium Ligands

Stefan Buller, Darius Paul Zlotos, Klaus Mohr and John Ellis
Molecular Pharmacology January 2002, 61 (1) 160-168; DOI: https://doi.org/10.1124/mol.61.1.160
Stefan Buller
Departments of 1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darius Paul Zlotos
Departments of 1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Klaus Mohr
Departments of 1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Ellis
Departments of 1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Diverse muscarinic allosteric ligands exhibit greatest affinity toward the M2 receptor subtype and lowest affinity toward M5. In this study, we evaluated the potencies with which two groups of highly M2/M5 selective allosteric agents modulate the dissociation of [3H]N-methylscopolamine from M2/M5 chimeric and point-mutated receptors. These allosteric ligands included two alkane-bisammonium compounds and a series of caracurine V derivatives, which are structurally closely related to (but stereochemically different from) the prototype allosteric ligand alcuronium. Like alcuronium, the caracurine V and alkane-bisammonium compounds displayed significantly increased affinities compared with M5 toward the chimera that included the M2 second outer loop (o2) plus surrounding regions. Unlike alcuronium, the compounds had enhanced affinities for a chimera with M2 sequence in transmembrane region (TM) 7; site-directed mutagenesis in wild-type and chimeric receptors indicated that the threonine residue at M2 423 was entirely responsible for the sensitivity toward TM7. Subsequent studies demonstrated that this TM7 epitope is likewise present in the M4 receptor, as M4 436serine. The M2 423threonine residue is near the M2 419asparagine identified previously to influence gallamine binding. These studies demonstrate that a stereochemical difference can be sufficient to translate into divergent epitope sensitivities. Nonetheless, these allosteric ligands seem to derive affinity from two main regions of the receptor: o2 plus flanking regions and o3/TM7. These two epitopes are sufficient to explain the M2/M5 selectivity of the presently investigated compounds; this is the first time that the subtype selectivity of muscarinic allosteric agents has been completely accounted for by distinct receptor epitopes.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 61 (1)
Molecular Pharmacology
Vol. 61, Issue 1
1 Jan 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Allosteric Site on Muscarinic Acetylcholine Receptors: A Single Amino Acid in Transmembrane Region 7 Is Critical to the Subtype Selectivities of Caracurine V Derivatives and Alkane-Bisammonium Ligands
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Allosteric Site on Muscarinic Acetylcholine Receptors: A Single Amino Acid in Transmembrane Region 7 Is Critical to the Subtype Selectivities of Caracurine V Derivatives and Alkane-Bisammonium Ligands

Stefan Buller, Darius Paul Zlotos, Klaus Mohr and John Ellis
Molecular Pharmacology January 1, 2002, 61 (1) 160-168; DOI: https://doi.org/10.1124/mol.61.1.160

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Allosteric Site on Muscarinic Acetylcholine Receptors: A Single Amino Acid in Transmembrane Region 7 Is Critical to the Subtype Selectivities of Caracurine V Derivatives and Alkane-Bisammonium Ligands

Stefan Buller, Darius Paul Zlotos, Klaus Mohr and John Ellis
Molecular Pharmacology January 1, 2002, 61 (1) 160-168; DOI: https://doi.org/10.1124/mol.61.1.160
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Action of Org 34167 on HCN channels
  • The effects of echinocystic acid on Kv7 channels
  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics