Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Gastrin-Releasing Peptide Mediates Photic Entrainable Signals to Dorsal Subsets of Suprachiasmatic Nucleus via Induction ofPeriod Gene in Mice

Reiko Aida, Takahiro Moriya, Miwa Araki, Masashi Akiyama, Keiji Wada, Etsuko Wada and Shigenobu Shibata
Molecular Pharmacology January 2002, 61 (1) 26-34; DOI: https://doi.org/10.1124/mol.61.1.26
Reiko Aida
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takahiro Moriya
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miwa Araki
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masashi Akiyama
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Keiji Wada
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Etsuko Wada
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shigenobu Shibata
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The suprachiasmatic nucleus (SCN), locus of the central circadian clock, consists of two neuronal populations (i.e., a light-recipient ventral SCN subpopulation directly entrained by light and a dorsal SCN subpopulation with an autonomous oscillatory function possessing an indirect or weak light response). However, the mechanism underlying the transmission of photic signals from the ventral to dorsal SCN remains unclear. Because gastrin-releasing peptide (GRP), expressed mainly in the ventral SCN, exerts phase-shifting actions, loss of the GRP receptor intuitively implies a reduction of photic information from the ventral to dorsal SCN. Therefore, using GRP receptor-deficient mice, we examined the involvement of GRP and the GRP receptor in light- and GRP-induced entrainment by the assessment of behavioral rhythm and induction of mousePeriod(mPer) gene in the SCN, which is believed to be a critical for photic entrainment. Administration of GRP during nighttime dose dependently produced a phase delay of behavior in wild-type but not GRP receptor-deficient mice. This phase-shift by GRP was closely associated with induction of mPer1 andmPer2 mRNA as well as c-Fos protein in the dorsal portion of the SCN, where the GRP receptor was also expressed abundantly. Both the light-induced phase shift in behavior and the induction of mPer mRNA and c-Fos protein in the dorsal SCN were attenuated in GRP receptor-deficient mice. Our present studies suggest that GRP neurons in the retinorecipient ventral area of the SCN convey the photic entrainable signals from the ventral SCN to the dorsal SCN via induction of the mPer gene.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 61 (1)
Molecular Pharmacology
Vol. 61, Issue 1
1 Jan 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Gastrin-Releasing Peptide Mediates Photic Entrainable Signals to Dorsal Subsets of Suprachiasmatic Nucleus via Induction ofPeriod Gene in Mice
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Gastrin-Releasing Peptide Mediates Photic Entrainable Signals to Dorsal Subsets of Suprachiasmatic Nucleus via Induction ofPeriod Gene in Mice

Reiko Aida, Takahiro Moriya, Miwa Araki, Masashi Akiyama, Keiji Wada, Etsuko Wada and Shigenobu Shibata
Molecular Pharmacology January 1, 2002, 61 (1) 26-34; DOI: https://doi.org/10.1124/mol.61.1.26

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Gastrin-Releasing Peptide Mediates Photic Entrainable Signals to Dorsal Subsets of Suprachiasmatic Nucleus via Induction ofPeriod Gene in Mice

Reiko Aida, Takahiro Moriya, Miwa Araki, Masashi Akiyama, Keiji Wada, Etsuko Wada and Shigenobu Shibata
Molecular Pharmacology January 1, 2002, 61 (1) 26-34; DOI: https://doi.org/10.1124/mol.61.1.26
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics