Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Rapid CommunicationAccelerated Communication

Diclofenac Antagonizes Peroxisome Proliferator-Activated Receptor-γ Signaling

Douglas J. A. Adamson, David Frew, Roger Tatoud, C. Roland Wolf and Colin N. A. Palmer
Molecular Pharmacology January 2002, 61 (1) 7-12; DOI: https://doi.org/10.1124/mol.61.1.7
Douglas J. A. Adamson
Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital, Dundee, Scotland, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Frew
Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital, Dundee, Scotland, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger Tatoud
Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital, Dundee, Scotland, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Roland Wolf
Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital, Dundee, Scotland, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Colin N. A. Palmer
Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital, Dundee, Scotland, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although nonsteroidal anti-inflammatory drugs (NSAIDs) are used as cancer chemopreventative agents, their mechanism is unclear because NSAIDs have cyclooxygenase-independent actions. We investigated an alternative target for NSAIDs, peroxisome proliferator-activated receptor-γ (PPARγ), activation of which decreases cancer cell proliferation. NSAIDs have been shown to activate this receptor, but only at high concentrations. Here, we have examined binding of diclofenac to PPARγ using a cis-parinaric acid displacement assay and studied the effect of diclofenac effect on PPARγ trans-activation in a COS-1 cell reporter assay. Unexpectedly, diclofenac bound PPARγ at therapeutic concentrations (K i = 700 nM) but induced only 2-fold activation of PPARγ at a concentration of 25 μM and antagonized PPARγ trans-activation by rosiglitazone. This antagonism was overcome with increasing rosiglitazone concentrations, indicating that diclofenac is a partial agonist. No effect of diclofenac was seen without exogenous receptor, confirming that it was working through a PPARγ-specific mechanism. This is the first description of an NSAID that can antagonize PPARγ. In addition, this is the first time that an NSAID has been shown to bind this receptor at clinically meaningful concentrations. The physiological relevance of these findings was tested using adipocyte differentiation and cancer cell proliferation assays. Diclofenac decreased PPARγ-mediated adipose cell differentiation by 60% and inhibited the action of rosiglitazone on the prostate cancer cell line, DU-145, allowing a 3-fold increase in proliferation. This work shows that standard doses of diclofenac may have pharmacodynamic interactions with rosiglitazone and this has therapeutic implications, both in the management of type 2 diabetes and during cancer treatment.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 61 (1)
Molecular Pharmacology
Vol. 61, Issue 1
1 Jan 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Diclofenac Antagonizes Peroxisome Proliferator-Activated Receptor-γ Signaling
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationAccelerated Communication

Diclofenac Antagonizes Peroxisome Proliferator-Activated Receptor-γ Signaling

Douglas J. A. Adamson, David Frew, Roger Tatoud, C. Roland Wolf and Colin N. A. Palmer
Molecular Pharmacology January 1, 2002, 61 (1) 7-12; DOI: https://doi.org/10.1124/mol.61.1.7

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationAccelerated Communication

Diclofenac Antagonizes Peroxisome Proliferator-Activated Receptor-γ Signaling

Douglas J. A. Adamson, David Frew, Roger Tatoud, C. Roland Wolf and Colin N. A. Palmer
Molecular Pharmacology January 1, 2002, 61 (1) 7-12; DOI: https://doi.org/10.1124/mol.61.1.7
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • GABAA Receptor Desensitization by Low GABA
  • Structure of the Diltiazem Receptor Site on Calcium Channels
  • 5-HT and Sleep
Show more Accelerated Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics