Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

2-Methoxyestradiol and Analogs as Novel Antiproliferative Agents: Analysis of Three-Dimensional Quantitative Structure-Activity Relationships for DNA Synthesis Inhibition and Estrogen Receptor Binding

Richard A. Hughes, Trudi Harris, Emile Altmann, David McAllister, Ross Vlahos, Alan Robertson, Mark Cushman, Zhiqiang Wang and Alastair G. Stewart
Molecular Pharmacology May 2002, 61 (5) 1053-1069; DOI: https://doi.org/10.1124/mol.61.5.1053
Richard A. Hughes
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Trudi Harris
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emile Altmann
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David McAllister
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ross Vlahos
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan Robertson
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Cushman
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhiqiang Wang
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alastair G. Stewart
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

2-Methoxyestradiol (2-MEO), a metabolite of estrogen, is an attractive lead compound for the development of novel antitumor and anti-inflammatory agents, because it embodies antiproliferative and antiangiogenic activities in one molecule. However, the affinity of 2-MEO for the estrogen receptor would lead to undesirable side effects. As a prelude to the design of 2-MEO–like compounds with an optimal activity profile, we assayed 2-MEO and a series of analogs for their ability to cause G1 cell-cycle arrest (by measuring inhibition of DNA synthesis in human cultured airway smooth muscle) and to inhibit binding of [3H]estradiol at the estrogen receptor (ER; from rat uterine smooth muscle). One compound, a diacetoxy enediol derivative, was identified with reasonable potency for DNA synthesis (pIC50 = 5.97) but showed negligible affinity for the ER (pIC50 < 5). Three-dimensional quantitative structure-activity relationships were developed for these activities using comparative molecular field analysis (CoMFA) techniques. Comparison of optimized CoMFA models revealed distinct structural requirements for DNA synthesis inhibition and ER binding. For example, DNA synthesis inhibition is enhanced by electropositive substitutions in the 2-position below the plane of the steroid A-ring, whereas ER binding is favored by electronegative substitution in this position. Similarly, DNA synthesis inhibition correlates negatively with increased steric bulk in regions clustered around the A and B rings; changes in steric bulk in these regions has little correlation with ER binding. These observations will guide the design of new analogs with improved potency for desired characteristics (e.g., DNA synthesis inhibition) with minimal unwanted activities (e.g., ER binding).

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 61 (5)
Molecular Pharmacology
Vol. 61, Issue 5
1 May 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
2-Methoxyestradiol and Analogs as Novel Antiproliferative Agents: Analysis of Three-Dimensional Quantitative Structure-Activity Relationships for DNA Synthesis Inhibition and Estrogen Receptor Binding
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

2-Methoxyestradiol and Analogs as Novel Antiproliferative Agents: Analysis of Three-Dimensional Quantitative Structure-Activity Relationships for DNA Synthesis Inhibition and Estrogen Receptor Binding

Richard A. Hughes, Trudi Harris, Emile Altmann, David McAllister, Ross Vlahos, Alan Robertson, Mark Cushman, Zhiqiang Wang and Alastair G. Stewart
Molecular Pharmacology May 1, 2002, 61 (5) 1053-1069; DOI: https://doi.org/10.1124/mol.61.5.1053

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

2-Methoxyestradiol and Analogs as Novel Antiproliferative Agents: Analysis of Three-Dimensional Quantitative Structure-Activity Relationships for DNA Synthesis Inhibition and Estrogen Receptor Binding

Richard A. Hughes, Trudi Harris, Emile Altmann, David McAllister, Ross Vlahos, Alan Robertson, Mark Cushman, Zhiqiang Wang and Alastair G. Stewart
Molecular Pharmacology May 1, 2002, 61 (5) 1053-1069; DOI: https://doi.org/10.1124/mol.61.5.1053
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Compounds
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Allosteric Modulation of NMDA Receptor Conductance
  • Positive Allosteric Modulation of the mGlu5 Receptor
  • 6-Methylflavone Blocks Bitterness of Tenofovir
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics