Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Native CYP2C11: Heterologous Expression in Saccharomyces cerevisiae Reveals a Role for Vacuolar Proteases Rather Than the Proteasome System in the Degradation of This Endoplasmic Reticulum Protein

Bernard P. Murray, Victor G. Zgoda and Maria Almira Correia
Molecular Pharmacology May 2002, 61 (5) 1146-1153; DOI: https://doi.org/10.1124/mol.61.5.1146
Bernard P. Murray
Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Biopharmaceutical Sciences and the Liver Center, University of California, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victor G. Zgoda
Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Biopharmaceutical Sciences and the Liver Center, University of California, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria Almira Correia
Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Biopharmaceutical Sciences and the Liver Center, University of California, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cytochromes P450 (P450s) are hemoprotein enzymes committed to the metabolism of chemically diverse endo- and xenobiotics. They are anchored to the endoplasmic reticulum (ER) membrane with the bulk of their catalytic domain exposed to the cytosol, and thus they constitute excellent examples of integral monotopic ER proteins. Physiologically they are known to turn over asynchronously, but the determinants that trigger their proteolytic disposal and the pathways for such cellular disposal are not well defined. We recently showed that CYP3A4, the dominant human liver drug-metabolizing enzyme, and its rat liver orthologs undergo ubiquitin-dependent 26S proteasomal degradation not only after suicide inactivation, but also when CYP3A4 is expressed inSaccharomyces cerevisiae, presumably in its “native” form. The latter findings, obtained by the use of strains either with compromised proteasomal degradation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) or deficient in ubiquitin-conjugating enzymes (Ubc; UBC), revealed that this native monotopic P450 enzyme, in common with the polytopic HMGR, required the function of certain HRD(HMGR degradation) and UBC genes. In this study, we examined the degradation of CYP2C11, a male rat liver–specific P450, by heterologous expression in S. cerevisiae under comparable conditions. We report that unlike CYP3A4 and HMGR, the degradation of CYP2C11 in S. cerevisiae is independent of either HRD or UBC gene function, but it is largely dependent on vacuolar (lysosomal) proteolysis. These findings with two monotopic ER hemoproteins, CYP2C11 and CYP3A4, and the polytopic ER protein HMGR attest to the remarkable mechanistic diversity of cellular proteolytic disposal of ER proteins.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 61 (5)
Molecular Pharmacology
Vol. 61, Issue 5
1 May 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Native CYP2C11: Heterologous Expression in Saccharomyces cerevisiae Reveals a Role for Vacuolar Proteases Rather Than the Proteasome System in the Degradation of This Endoplasmic Reticulum Protein
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Native CYP2C11: Heterologous Expression in Saccharomyces cerevisiae Reveals a Role for Vacuolar Proteases Rather Than the Proteasome System in the Degradation of This Endoplasmic Reticulum Protein

Bernard P. Murray, Victor G. Zgoda and Maria Almira Correia
Molecular Pharmacology May 1, 2002, 61 (5) 1146-1153; DOI: https://doi.org/10.1124/mol.61.5.1146

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Native CYP2C11: Heterologous Expression in Saccharomyces cerevisiae Reveals a Role for Vacuolar Proteases Rather Than the Proteasome System in the Degradation of This Endoplasmic Reticulum Protein

Bernard P. Murray, Victor G. Zgoda and Maria Almira Correia
Molecular Pharmacology May 1, 2002, 61 (5) 1146-1153; DOI: https://doi.org/10.1124/mol.61.5.1146
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics