Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Critical Molecular Determinants of Voltage-Gated Sodium Channel Sensitivity to μ-Conotoxins GIIIA/B

Theodore R. Cummins, Fabio Aglieco and Sulayman D. Dib-Hajj
Molecular Pharmacology May 2002, 61 (5) 1192-1201; DOI: https://doi.org/10.1124/mol.61.5.1192
Theodore R. Cummins
Department of Neurology and PVA/EPVA Neuroscience Research Center, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fabio Aglieco
Department of Neurology and PVA/EPVA Neuroscience Research Center, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sulayman D. Dib-Hajj
Department of Neurology and PVA/EPVA Neuroscience Research Center, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

GIIIA/B μ-conotoxins block the rat skeletal muscle sodium channel (rNav1.4) with high affinity by binding to specific residues in the pore. However, human Nav1.4 (hNav1.4) channels, which are resistant to block by GIIIA/B, have these same pore residues. We used chimera constructs, site-directed mutagenesis, and electrophysiological techniques to investigate which residues determine GIIIA/B selectivity. Exchange of serine 729 in the D2/S5-S6 linker of rat Nav1.4 with leucine (S729L), the corresponding residue in hNav1.4, reduces the sensitivity of rNav1.4 by ∼20-fold and largely accounts for the differential sensitivity of rNav1.4 and hNav1.4 to both GIIIA and GIIIB. To determine whether D2/S5-S6 linker residues might contribute to the resistance of neuronal channels to GIIIA/B, we exchanged residues in this linker that differed between rNav1.4 and neuronal channels. Substitution of aspargine 732 with lysine (N732K), the corresponding residue in rNav1.1a and rNav1.7, reduced the GIIIB sensitivity of rNav1.4 by ∼20-fold. The N732K substitution, however, only reduced GIIIA sensitivity of rNav1.4 by ∼4-fold, demonstrating that GIIIA and GIIIB have distinct interactions with the D2/S5-S6 linker. Our data indicate that naturally occurring variants in the extra-pore region of the D2/S5-S6 linker contribute to the isoform-specific sensitivity of sodium channels to GIIIA/B. Because S729 and N732 are not part of the high-affinity binding site for μ-conotoxins, these extra-pore residues probably influence the accessibility of the toxin to the binding site within the pore and/or the stability of the toxin-channel complex. Our results should aid the development of toxins that block specific neuronal sodium channel isoforms.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 61 (5)
Molecular Pharmacology
Vol. 61, Issue 5
1 May 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Critical Molecular Determinants of Voltage-Gated Sodium Channel Sensitivity to μ-Conotoxins GIIIA/B
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Critical Molecular Determinants of Voltage-Gated Sodium Channel Sensitivity to μ-Conotoxins GIIIA/B

Theodore R. Cummins, Fabio Aglieco and Sulayman D. Dib-Hajj
Molecular Pharmacology May 1, 2002, 61 (5) 1192-1201; DOI: https://doi.org/10.1124/mol.61.5.1192

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Critical Molecular Determinants of Voltage-Gated Sodium Channel Sensitivity to μ-Conotoxins GIIIA/B

Theodore R. Cummins, Fabio Aglieco and Sulayman D. Dib-Hajj
Molecular Pharmacology May 1, 2002, 61 (5) 1192-1201; DOI: https://doi.org/10.1124/mol.61.5.1192
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics