Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Zebrafish (Danio rerio) Aryl Hydrocarbon Receptor Type 1 Is a Novel Vertebrate Receptor

Eric A. Andreasen, Mark E. Hahn, Warren Heideman, Richard E. Peterson and Robert L. Tanguay
Molecular Pharmacology August 2002, 62 (2) 234-249; DOI: https://doi.org/10.1124/mol.62.2.234
Eric A. Andreasen
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark E. Hahn
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Warren Heideman
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard E. Peterson
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert L. Tanguay
1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Fish are known to have two distinct classes of aryl hydrocarbon receptors, and their roles in mediating xenobiotic toxicity remain unclear. In this study, we have identified and characterized a cDNA tentatively named zebrafish AHR1 (zfAHR1). Analysis of the deduced amino acid sequence reveals that the protein is distinct from zfAHR2 and is more closely related to the mammalian aryl hydrocarbon receptor (AHR). zfAHR1 and zfAHR2 share 40% amino acid identity overall and 58% in the N-terminal half. The zfAHR1 gene maps to linkage group 16 in a region that shares conserved synteny with human chromosome 7 containing the humanAHR, suggesting that the zfAHR1 is the ortholog of the human AHR. zfAHR2 maps to a separate linkage group (LG22). Both zfAHR mRNAs are expressed in early development, but they are differentially expressed in adult tissues. zfAHR2 can dimerize with zfARNT2b and binds with specificity to dioxin-responsive elements (DREs). Under identical conditions, zfAHR1/zfARNT2b/DRE complexes are formed; however, the interactions are considerably weaker. In COS-7 cells expressing zfARNT2b and zfAHR2, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure leads to a significant induction of dioxin-responsive reporter genes. In identical experiments, TCDD exposure fails to induce the reporter gene in zfAHR1-expressing cells. Ligand-binding experiments suggested that the differential zfAHR activities are attributable to differences in TCDD binding because only zfAHR2 exhibits high-affinity binding to [3H]TCDD or β-naphthoflavone. Finally, using chimeric zfAHR1/zfAHR2 constructs, the lack of TCDD-mediated transcriptional activity was localized to the ligand-binding and C-terminal domains of zfAHR1.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 62 (2)
Molecular Pharmacology
Vol. 62, Issue 2
1 Aug 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Zebrafish (Danio rerio) Aryl Hydrocarbon Receptor Type 1 Is a Novel Vertebrate Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Zebrafish (Danio rerio) Aryl Hydrocarbon Receptor Type 1 Is a Novel Vertebrate Receptor

Eric A. Andreasen, Mark E. Hahn, Warren Heideman, Richard E. Peterson and Robert L. Tanguay
Molecular Pharmacology August 1, 2002, 62 (2) 234-249; DOI: https://doi.org/10.1124/mol.62.2.234

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Zebrafish (Danio rerio) Aryl Hydrocarbon Receptor Type 1 Is a Novel Vertebrate Receptor

Eric A. Andreasen, Mark E. Hahn, Warren Heideman, Richard E. Peterson and Robert L. Tanguay
Molecular Pharmacology August 1, 2002, 62 (2) 234-249; DOI: https://doi.org/10.1124/mol.62.2.234
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
  • Relapsed-leukemia model with NT5C2/PRPS1 hotspot mutations
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics