Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Activation of the Mitogen Activated Protein Kinase Extracellular Signal-Regulated Kinase 1 and 2 by the Nitric Oxide–cGMP–cGMP-Dependent Protein Kinase Axis Regulates the Expression of Matrix Metalloproteinase 13 in Vascular Endothelial Cells

Carlos Zaragoza, Estrella Soria, Esther López, Darren Browning, Milagros Balbı́n, Carlos López-Otı́n and Santiago Lamas
Molecular Pharmacology October 2002, 62 (4) 927-935; DOI: https://doi.org/10.1124/mol.62.4.927
Carlos Zaragoza
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Estrella Soria
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Esther López
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darren Browning
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Milagros Balbı́n
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carlos López-Otı́n
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Santiago Lamas
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has a correction. Please see:

  • Correction to “Activation of the mitogen activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide–cGMP–cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells” - November 01, 2002

Abstract

Matrix metalloproteinases (MMPs) are synthesized in response to diverse stimuli, including cytokines, growth factors, hormones, and oxidative stress. Here we show that the nitric oxide (NO) donor 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA-NO) and NO from murine macrophages transcriptionally regulate MMP-13 expression in vascular endothelial cells (BAEC). The cGMP analog, 8-bromo-cGMP (8-Br-cGMP) mimicked the effect of NO, whereas incubation with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, or the cGMP-dependent protein kinase (PKG) inhibitor phenyl-1,N  2- etheno-8-bromoguanosine-3′,5′-cyclic monophosphorothioate,Rp-isomer (PET) reduced the stimulatory effect of DEA-NO on the activation of the MMP-13 promoter. Overexpression of the catalytic subunit of PKG1-α resulted in a 5- to 6-fold increase of the MMP-13 regulatory region over control cells. On the other hand, incubation with the mitogen-activated protein/extracellular signal-regulated kinase inhibitor 2′-amino-3′-methoxyflavone (PD98059) significantly reduced DEA-NO and 8-Br-cGMP promoter activation and mRNA expression of MMP-13 in transfected BAEC. Moreover, a complex between PKG1-α and the G-protein Raf-1, an upstream activator of the extracellular signal-regulated kinase signaling pathway, was detected in cells overexpressing PKG1-α or treated either with DEA-NO or 8-Br-cGMP. Thus, we propose that the NO-cGMP-PKG pathway enhances MMP-13 expression by the activation of ERK 1,2. This effect of NO may be the result of pathophysiological importance in the context of inflammation or atherogenesis.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 62 (4)
Molecular Pharmacology
Vol. 62, Issue 4
1 Oct 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activation of the Mitogen Activated Protein Kinase Extracellular Signal-Regulated Kinase 1 and 2 by the Nitric Oxide–cGMP–cGMP-Dependent Protein Kinase Axis Regulates the Expression of Matrix Metalloproteinase 13 in Vascular Endothelial Cells
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Activation of the Mitogen Activated Protein Kinase Extracellular Signal-Regulated Kinase 1 and 2 by the Nitric Oxide–cGMP–cGMP-Dependent Protein Kinase Axis Regulates the Expression of Matrix Metalloproteinase 13 in Vascular Endothelial Cells

Carlos Zaragoza, Estrella Soria, Esther López, Darren Browning, Milagros Balbı́n, Carlos López-Otı́n and Santiago Lamas
Molecular Pharmacology October 1, 2002, 62 (4) 927-935; DOI: https://doi.org/10.1124/mol.62.4.927

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Activation of the Mitogen Activated Protein Kinase Extracellular Signal-Regulated Kinase 1 and 2 by the Nitric Oxide–cGMP–cGMP-Dependent Protein Kinase Axis Regulates the Expression of Matrix Metalloproteinase 13 in Vascular Endothelial Cells

Carlos Zaragoza, Estrella Soria, Esther López, Darren Browning, Milagros Balbı́n, Carlos López-Otı́n and Santiago Lamas
Molecular Pharmacology October 1, 2002, 62 (4) 927-935; DOI: https://doi.org/10.1124/mol.62.4.927
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • 6-Methylflavone Blocks Bitterness of Tenofovir
  • Positive Allosteric Modulation of the mGlu5 Receptor
  • Correction of mutant CNGA3 channel trafficking defect
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics