Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Pharmacophore Definition and Three-Dimensional Quantitative Structure-Activity Relationship Study on Structurally Diverse Prostacyclin Receptor Agonists

Friederike Stoll, Sven Liesener, Thomas Hohlfeld, Karsten Schrör, Philip L. Fuchs and Hans-Dieter Höltje
Molecular Pharmacology November 2002, 62 (5) 1103-1111; DOI: https://doi.org/10.1124/mol.62.5.1103
Friederike Stoll
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sven Liesener
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Hohlfeld
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karsten Schrör
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip L. Fuchs
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hans-Dieter Höltje
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Prostacyclin is an endogenous mediator that shows potent platelet inhibitory activity and powerful relaxation of peripheral resistance vessels. Prostacyclin receptor agonists are valuable drugs in the treatment of various vascular diseases spanning primary pulmonary hypertension to Raynaud's syndrome. Although agonists from various structural classes were synthesized, a common pharmacophore was never defined. Therefore, an attempt was made to integrate the different agonists into a single model. A dataset of structurally diverse prostacyclin receptor agonists was tested for its affinity to the human platelet prostacyclin receptor. The dataset included prostanoid and nonprostanoid ligands comprising iloprost, cicaprost, and BMY45778. Extensive conformational analyses were performed for both classes of compounds because of the absence of rigid templates. The search and superimposition procedure yielded a pharmacophore that aligns the essential carboxylate group of the agonists as well as demonstrates that different functional groups in prostanoid and nonprostanoid agonists can be arranged in a uniform conformation. A three-dimensional quantitative structure-activity relationship study was performed using the programs GRID and GOLPE. This analysis yielded a cross-validated correlation coefficient of 0.77. With this model, it is possible to predict the affinity of untested compounds.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 62 (5)
Molecular Pharmacology
Vol. 62, Issue 5
1 Nov 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacophore Definition and Three-Dimensional Quantitative Structure-Activity Relationship Study on Structurally Diverse Prostacyclin Receptor Agonists
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Pharmacophore Definition and Three-Dimensional Quantitative Structure-Activity Relationship Study on Structurally Diverse Prostacyclin Receptor Agonists

Friederike Stoll, Sven Liesener, Thomas Hohlfeld, Karsten Schrör, Philip L. Fuchs and Hans-Dieter Höltje
Molecular Pharmacology November 1, 2002, 62 (5) 1103-1111; DOI: https://doi.org/10.1124/mol.62.5.1103

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Pharmacophore Definition and Three-Dimensional Quantitative Structure-Activity Relationship Study on Structurally Diverse Prostacyclin Receptor Agonists

Friederike Stoll, Sven Liesener, Thomas Hohlfeld, Karsten Schrör, Philip L. Fuchs and Hans-Dieter Höltje
Molecular Pharmacology November 1, 2002, 62 (5) 1103-1111; DOI: https://doi.org/10.1124/mol.62.5.1103
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics