Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Localization of Adenylyl Cyclase Isoforms and G Protein-Coupled Receptors in Vascular Smooth Muscle Cells: Expression in Caveolin-Rich and Noncaveolin Domains

Rennolds S. Ostrom, Xiaoqiu Liu, Brian P. Head, Caroline Gregorian, Tammy M. Seasholtz and Paul A. Insel
Molecular Pharmacology November 2002, 62 (5) 983-992; DOI: https://doi.org/10.1124/mol.62.5.983
Rennolds S. Ostrom
Departments of Pharmacology and Medicine, School of Medicine, University of California, San Diego, La Jolla, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoqiu Liu
Departments of Pharmacology and Medicine, School of Medicine, University of California, San Diego, La Jolla, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian P. Head
Departments of Pharmacology and Medicine, School of Medicine, University of California, San Diego, La Jolla, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Caroline Gregorian
Departments of Pharmacology and Medicine, School of Medicine, University of California, San Diego, La Jolla, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tammy M. Seasholtz
Departments of Pharmacology and Medicine, School of Medicine, University of California, San Diego, La Jolla, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul A. Insel
Departments of Pharmacology and Medicine, School of Medicine, University of California, San Diego, La Jolla, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A number of different agonists activate G protein-coupled receptors to stimulate adenylyl cyclase (AC), increase cAMP formation, and promote relaxation in vascular smooth muscle. To more fully understand this stimulation of AC, we assessed the expression, regulation, and compartmentation of AC isoforms in rat aortic smooth muscle cells (RASMC). Reverse transcription-polymerase chain reaction detected expression of AC3, AC5, and AC6 mRNA, whereas immunoblot analysis indicated expression of AC3 and AC5/6 protein primarily in caveolin-rich membrane (cav) fractions relative to noncaveolin (noncav) fractions. β1-Adrenergic receptors (AR), β2AR, and Gs were detected in both cav and noncav fractions, whereas the prostanoid receptors EP2R and EP4R were excluded from cav fractions. We used an adenoviral construct to increase AC6 expression. Overexpressed AC6 localized only in noncav fractions. Two-fold overexpression of AC6 caused enhancement of forskolin-, isoproterenol- and prostaglandin E2-stimulated cAMP formation but no changes in basal levels of cAMP. At higher levels of AC6 overexpression, basal and adenosine receptor-stimulated cAMP levels were increased. Stimulation of cAMP levels by agents that increase Ca2+ in native cells was consistent with the expression of AC3, but overexpression of AC6, which is inhibited by Ca2+, blunted the Ca2+-stimulable cAMP response. These data indicate that: 1) RASMC express multiple AC isoforms that localize in both caveolin-rich and noncaveolin domains, 2) expression of AC6 in non–caveolin-rich membranes can increase basal levels of cAMP and response to several stimulatory agonists, and 3) Ca2+-mediated regulation of cAMP formation depends upon expression of different AC isoforms in RASMC. Compartmentation of GPCRs and AC is different in cardiomyocytes than in RASMC, indicating that targeting of these components to caveolin-rich membranes can be cell-specific. Moreover, our results imply that the colocalization of GPCRs and the AC isoforms they activate need not occur in caveolin-rich fractions.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 62 (5)
Molecular Pharmacology
Vol. 62, Issue 5
1 Nov 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Localization of Adenylyl Cyclase Isoforms and G Protein-Coupled Receptors in Vascular Smooth Muscle Cells: Expression in Caveolin-Rich and Noncaveolin Domains
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Localization of Adenylyl Cyclase Isoforms and G Protein-Coupled Receptors in Vascular Smooth Muscle Cells: Expression in Caveolin-Rich and Noncaveolin Domains

Rennolds S. Ostrom, Xiaoqiu Liu, Brian P. Head, Caroline Gregorian, Tammy M. Seasholtz and Paul A. Insel
Molecular Pharmacology November 1, 2002, 62 (5) 983-992; DOI: https://doi.org/10.1124/mol.62.5.983

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Localization of Adenylyl Cyclase Isoforms and G Protein-Coupled Receptors in Vascular Smooth Muscle Cells: Expression in Caveolin-Rich and Noncaveolin Domains

Rennolds S. Ostrom, Xiaoqiu Liu, Brian P. Head, Caroline Gregorian, Tammy M. Seasholtz and Paul A. Insel
Molecular Pharmacology November 1, 2002, 62 (5) 983-992; DOI: https://doi.org/10.1124/mol.62.5.983
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics