Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Molecular Basis of Partial Agonism: Orientation of Indoleamine Ligands in the Binding Pocket of the Human Serotonin 5-HT2A Receptor Determines Relative Efficacy

Barbara J. Ebersole, Irache Visiers, Harel Weinstein and Stuart C. Sealfon
Molecular Pharmacology January 2003, 63 (1) 36-43; DOI: https://doi.org/10.1124/mol.63.1.36
Barbara J. Ebersole
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Irache Visiers
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Harel Weinstein
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stuart C. Sealfon
Departments of 1 2 3 4
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Based on experiment and computational simulation, we present a structural explanation for the differing efficacies of indole agonists at the human serotonin 5-HT2A receptor (5HT2AR). We find that serotonin [5-hydroxytryptamine (5-HT)] forms hydrogen-bonds with Ser3.36 in helix 3 and Ser5.46 in helix 5. Disruption of these hydrogen bonds by methyl-substitution of the cationic primary amine or of the backbone N1-amine, respectively, leads to a reduction in agonist efficacy. Computational simulation predicts that mutation of Ser3.36 to Ala should allow a similar interaction with helix 3 both for agonists that have unmodified cationic amine side chains and for those with substituted amines. Experimentally, this mutation was found to largely eliminate the differences in efficacy caused by cationic amine substitution for a series of indole congeners. Similarly, substitution of the N1-amine, which interacts with Ser5.46, reduced efficacy more markedly at the wild-type (WT) than at the Ser5.46Ala mutant receptor. Computational modeling of binding pocket interactions of ligands with WT and mutant receptor constructs demonstrate how the Ser3.36 and Ser5.46 interactions serve to modify the agonist's favored position in the binding pocket. A striking correlation was found between differences in the position assumed by the indole ring and differences in agonist activity. These data support the hypothesis that the position of the agonist interacting with the receptor is influenced by specific interactions in helices 3 and 5 and determines the degree of receptor activation by agonist through a mechanism that is likely to be shared by other G-protein coupled receptors in this class.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 63 (1)
Molecular Pharmacology
Vol. 63, Issue 1
1 Jan 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Molecular Basis of Partial Agonism: Orientation of Indoleamine Ligands in the Binding Pocket of the Human Serotonin 5-HT2A Receptor Determines Relative Efficacy
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Molecular Basis of Partial Agonism: Orientation of Indoleamine Ligands in the Binding Pocket of the Human Serotonin 5-HT2A Receptor Determines Relative Efficacy

Barbara J. Ebersole, Irache Visiers, Harel Weinstein and Stuart C. Sealfon
Molecular Pharmacology January 1, 2003, 63 (1) 36-43; DOI: https://doi.org/10.1124/mol.63.1.36

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Molecular Basis of Partial Agonism: Orientation of Indoleamine Ligands in the Binding Pocket of the Human Serotonin 5-HT2A Receptor Determines Relative Efficacy

Barbara J. Ebersole, Irache Visiers, Harel Weinstein and Stuart C. Sealfon
Molecular Pharmacology January 1, 2003, 63 (1) 36-43; DOI: https://doi.org/10.1124/mol.63.1.36
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Pharmacological characterization of the human α6β4 nAChR
  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics