Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Human Renal Organic Anion Transporter 1-Dependent Uptake and Toxicity of Mercuric-Thiol Conjugates in Madin-Darby Canine Kidney Cells

Amy G. Aslamkhan, Yong-Hae Han, Xiao-Ping Yang, Rudolfs K. Zalups and John B. Pritchard
Molecular Pharmacology March 2003, 63 (3) 590-596; DOI: https://doi.org/10.1124/mol.63.3.590
Amy G. Aslamkhan
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yong-Hae Han
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao-Ping Yang
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rudolfs K. Zalups
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John B. Pritchard
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Mercuric ions are highly reactive and form a variety of organic complexes or conjugates in vivo. The renal proximal tubule is a primary target for mercury uptake and toxicity, and circumstantial evidence implicates organic anion transporters in these processes. To test this hypothesis directly, the transport and toxicity of mercuric-thiol conjugates were characterized in a Madin-Darby canine kidney cell line stably transfected with the human organic anion transporter 1 (hOAT1). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-terazolium bromide assays (for mitochondrial dehydrogenase) confirmed that mercuric conjugates of the thiols N-acetylcysteine (NAC), cysteine, or glutathione were more toxic in hOAT1-transfected cells than in the nontransfected cells. The NAC-Hg2+ conjugate was most cytotoxic, inducing greater than 50% cellular death over 18 h at a concentration of 100 μM. The cytotoxic effects were fully reversed by probenecid (an OAT1 inhibitor) and partially reversed byp-aminohippurate (an OAT1 substrate). Toxicity of this conjugate was reduced by the OAT1-exchangeable dicarboxylates α-ketoglutarate, glutarate, and adipate, but not by succinate, a nonexchangeable dicarboxylate. 203Hg-uptake studies showed probenecid-sensitive uptake of mercury-thiol conjugates in the hOAT1-transfected cells. The apparent K m for the NAC-Hg2+ conjugate was 44 ± 9 μM. Uptake of the NAC-Hg2+ conjugate was cis-inhibited by glutarate, but not by methylsuccinate, paralleling their effects on toxicity. Probenecid-sensitive transport of the NAC-Hg2+conjugate was also shown to occur in Xenopus laevisoocytes expressing the hOAT1 or the rOAT3 transporters, suggesting that OAT3 may also transport thiol-Hg2+ conjugates. Thus, renal accumulation and toxicity of thiol-Hg2+ conjugates may depend in part on the activity of the organic transport system.

  • U.S. Government
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 63 (3)
Molecular Pharmacology
Vol. 63, Issue 3
1 Mar 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Human Renal Organic Anion Transporter 1-Dependent Uptake and Toxicity of Mercuric-Thiol Conjugates in Madin-Darby Canine Kidney Cells
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Human Renal Organic Anion Transporter 1-Dependent Uptake and Toxicity of Mercuric-Thiol Conjugates in Madin-Darby Canine Kidney Cells

Amy G. Aslamkhan, Yong-Hae Han, Xiao-Ping Yang, Rudolfs K. Zalups and John B. Pritchard
Molecular Pharmacology March 1, 2003, 63 (3) 590-596; DOI: https://doi.org/10.1124/mol.63.3.590

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Human Renal Organic Anion Transporter 1-Dependent Uptake and Toxicity of Mercuric-Thiol Conjugates in Madin-Darby Canine Kidney Cells

Amy G. Aslamkhan, Yong-Hae Han, Xiao-Ping Yang, Rudolfs K. Zalups and John B. Pritchard
Molecular Pharmacology March 1, 2003, 63 (3) 590-596; DOI: https://doi.org/10.1124/mol.63.3.590
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics