Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Pharmacological Characterization of the Human P2Y13 Receptor

Frederic Marteau, Emmanuel Le Poul, David Communi, Didier Communi, Catherine Labouret, Pierre Savi, Jean-Marie Boeynaems and Nathalie Suarez Gonzalez
Molecular Pharmacology July 2003, 64 (1) 104-112; DOI: https://doi.org/10.1124/mol.64.1.104
Frederic Marteau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emmanuel Le Poul
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Communi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Didier Communi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine Labouret
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Savi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Marie Boeynaems
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathalie Suarez Gonzalez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The P2Y13 receptor has recently been identified as a new P2Y receptor sharing a high sequence homology with the P2Y12 receptor as well as similar functional properties: coupling to Gi and responsiveness to ADP (Communi et al., 2001). In the present study, the pharmacology of the P2Y13 receptor and its differences with that of the P2Y12 receptor have been further characterized in 1321N1 cells (binding of [33P]2-methylthio-ADP (2MeSADP) and of GTPγ[35S]), 1321N1 cells coexpressing Gα16 [AG32 cells: inositol trisphosphate (IP3) measurement, binding of GTPγ[35S]) and Chinese hamster ovary (CHO)-K1 cells (cAMP assay)]. 2MeSADP was more potent than ADP in displacing [33P]2MeSADP bound to 1321N1 cells and increasing GTPγ[35S] binding to membranes prepared from the same cells. Similarly, 2MeSADP was more potent than ADP in stimulating IP3 accumulation after 10 min in AG32 cells and increasing cAMP in pertussis toxin-treated CHO-K1 cells stimulated by forskolin. On the other hand, ADP and 2MeSADP were equipotent at stimulating IP3 formation in AG32 cells after 30 s and inhibiting forskolininduced cAMP accumulation in CHO-K1 cells. These differences in potency cannot be explained by differences in degradation rate, which in AG32 cells was similar for the two nucleotides. When contaminating diphosphates were enzymatically removed and assay of IP3 was performed after 30 s, ATP and 2MeSATP seemed to be weak partial agonists of the P2Y13 receptor expressed in AG32 cells. The stimulatory effect of ADP on the P2Y13 receptor in AG32 cells was antagonized by reactive blue 2, suramin, pyridoxal-phosphate-6-azophenyl-2′,4′disulfonic acid, diadenosine tetraphosphate, and 2-(propylthio)-5′-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (AR-C67085MX), but not by N6-methyl 2′-deoxyadenosine 3′,5′-bisphosphate (MRS-2179) (up to 100 μM). The most potent antagonist was N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-5′-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (ARC69931MX) (IC50 = 4 nM), which behaved in a noncompetitive way. The active metabolite of clopidogrel was unable to displace bound 2MeSADP at concentrations up to 2 μM.

  • Received July 12, 2002.
  • Accepted March 20, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (1)
Molecular Pharmacology
Vol. 64, Issue 1
1 Jul 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological Characterization of the Human P2Y13 Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Pharmacological Characterization of the Human P2Y13 Receptor

Frederic Marteau, Emmanuel Le Poul, David Communi, Didier Communi, Catherine Labouret, Pierre Savi, Jean-Marie Boeynaems and Nathalie Suarez Gonzalez
Molecular Pharmacology July 1, 2003, 64 (1) 104-112; DOI: https://doi.org/10.1124/mol.64.1.104

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Pharmacological Characterization of the Human P2Y13 Receptor

Frederic Marteau, Emmanuel Le Poul, David Communi, Didier Communi, Catherine Labouret, Pierre Savi, Jean-Marie Boeynaems and Nathalie Suarez Gonzalez
Molecular Pharmacology July 1, 2003, 64 (1) 104-112; DOI: https://doi.org/10.1124/mol.64.1.104
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics