Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

P53-Dependent Cell-Killing by Selective Repression of Thymidine Kinase and Reduced Prodrug Activation

Dong Xu, Deitmar Falke and R. L. Juliano
Molecular Pharmacology August 2003, 64 (2) 289-297; DOI: https://doi.org/10.1124/mol.64.2.289
Dong Xu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Deitmar Falke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. L. Juliano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Selective killing of tumor cells is an important goal for cancer therapeutics. The tumor suppressor transcription factor p53 is absent or mutated in more than 50% of human tumors. Thus, determining approaches that use p53 status to regulate therapy may be an important strategy for attaining cancer selectivity. We have shown previously that a designed transcriptional repressor, K2–5F, strongly and selectively reduces the expression of its target gene MDR1. In this study, we exploited p53 status and the strong repressor activity of K2–5F to establish a system for preferential killing of p53-negative cells. In this system, the expression of K2–5F is induced by p53 in normal cells, and the K2–5F repressor then inhibits the expression of herpes simplex virus thymidine kinase (HSV-TK) driven by an MDR1 minipromoter. In p53-deficient cells, little K2–5F is expressed, and thus HSV-TK is expressed, allowing the cells to be killed by ganciclovir (GCV). K2–5F induced by exogenous p53 dramatically reduced the expression of HSV-TK in human embryonic kidney 293 cells, and it subsequently increased cell survival in response to GCV. To further evaluate this approach in a uniform genetic background, we developed Saos-2 cells stably expressing physiological levels of p53 and paired them with wild-type p53-negative Saos-2 cells. Stable expression of moderate levels of p53 in Saos-2 cells was able to induce the expression of K2–5F and reduce HSV-TK expression and resulted in a modest but distinct protection from GCV toxicity. Thus, this system may be suitable for further development as an approach to selective cancer therapy.

  • Received January 9, 2003.
  • Accepted April 10, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (2)
Molecular Pharmacology
Vol. 64, Issue 2
1 Aug 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
P53-Dependent Cell-Killing by Selective Repression of Thymidine Kinase and Reduced Prodrug Activation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

P53-Dependent Cell-Killing by Selective Repression of Thymidine Kinase and Reduced Prodrug Activation

Dong Xu, Deitmar Falke and R. L. Juliano
Molecular Pharmacology August 1, 2003, 64 (2) 289-297; DOI: https://doi.org/10.1124/mol.64.2.289

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

P53-Dependent Cell-Killing by Selective Repression of Thymidine Kinase and Reduced Prodrug Activation

Dong Xu, Deitmar Falke and R. L. Juliano
Molecular Pharmacology August 1, 2003, 64 (2) 289-297; DOI: https://doi.org/10.1124/mol.64.2.289
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Positive Allosteric Modulation of the mGlu5 Receptor
  • 6-Methylflavone Blocks Bitterness of Tenofovir
  • Correction of mutant CNGA3 channel trafficking defect
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics