Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Critical Role for Akt1 in the Modulation of Apoptotic Phosphatidylserine Exposure and Microglial Activation

Jing-Qiong Kang, Zhao Zhong Chong and Kenneth Maiese
Molecular Pharmacology September 2003, 64 (3) 557-569; DOI: https://doi.org/10.1124/mol.64.3.557
Jing-Qiong Kang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhao Zhong Chong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth Maiese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Biological targets for neurodegenerative disease that focus on the intrinsic maintenance of cellular integrity and the extrinsic prevention of phagocytic cellular disposal offer the greatest promise for therapeutic intervention. Protein kinase B (Akt1), a serine-threonine kinase closely involved in cell growth and survival, offers a strong potential to address both intrinsic and extrinsic mechanisms of neuronal injury. We demonstrate that overexpression of a constitutively active form of Akt1 (myristoylated Akt1) in differentiated SH-SY5Y neuronal cells provides intrinsic cellular protection against apoptotic genomic DNA destruction and membrane phosphatidylserine (PS) exposure. Transfection of SH-SY5Y cells with a plasmid encoding a kinase-deficient dominant-negative Akt1 eliminates cytoprotection, suggesting that activation of Akt1 is necessary and sufficient to prevent apoptotic destruction. Apoptotic neuronal membrane PS exposure provides a unique pathway for Akt1 to offer extrinsic cellular protection and block microglial activation, because independent cotreatment with an anti-PS receptor neutralizing antibody could also prevent microglial proliferation. Akt1 maintains nuclear DNA integrity and membrane PS exposure through the specific inhibition of caspase 3-, 8-, and 9-like activities that were linked to mitochondrial membrane potential and cytochrome c release. Our work elucidates a novel capacity for Akt1 to maintain cellular integrity through a series of cysteine protease pathways and to uniquely regulate microglial activation through the modulation of membrane PS residue externalization.

  • Received December 3, 2002.
  • Accepted May 14, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (3)
Molecular Pharmacology
Vol. 64, Issue 3
1 Sep 2003
  • Table of Contents
  • About the Cover
  • Index by author
  • [Supplemental Data]
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Critical Role for Akt1 in the Modulation of Apoptotic Phosphatidylserine Exposure and Microglial Activation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Critical Role for Akt1 in the Modulation of Apoptotic Phosphatidylserine Exposure and Microglial Activation

Jing-Qiong Kang, Zhao Zhong Chong and Kenneth Maiese
Molecular Pharmacology September 1, 2003, 64 (3) 557-569; DOI: https://doi.org/10.1124/mol.64.3.557

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Critical Role for Akt1 in the Modulation of Apoptotic Phosphatidylserine Exposure and Microglial Activation

Jing-Qiong Kang, Zhao Zhong Chong and Kenneth Maiese
Molecular Pharmacology September 1, 2003, 64 (3) 557-569; DOI: https://doi.org/10.1124/mol.64.3.557
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
  • Allosteric Modulation of Metabotropic Glutamate Receptor 1
  • Mechanism of Selective Action of Paraherquamide A
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics