Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

l-DOPA Treatment Modulates Nicotinic Receptors in Monkey Striatum

Maryka Quik, Tanuja Bordia, Michaella Okihara, Hong Fan, Michael J. Marks, J. Michael McIntosh and Paul Whiteaker
Molecular Pharmacology September 2003, 64 (3) 619-628; DOI: https://doi.org/10.1124/mol.64.3.619
Maryka Quik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tanuja Bordia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michaella Okihara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hong Fan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael J. Marks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Michael McIntosh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Whiteaker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nicotinic acetylcholine receptor (nAChR) activation is well known to stimulate dopamine release in the striatum. This phenomenon may be physiologically significant in the control of motor function, as well as in pathological conditions such as Parkinson's disease. An understanding of the mechanisms that influence nAChR expression and function is therefore important. Because the dopamine precursor l-DOPA is the most commonly used therapeutic agent for Parkinson's disease, we investigated the effects of l-DOPA treatment on striatal nAChR expression in unlesioned and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned monkeys. In unlesioned animals, l-DOPA (15 mg/kg) administered twice daily for 2 weeks decreased both 125I-epibatidine and [125I]iodo-3-[2(S)-azetidinylmethoxy]pyridine (A-85380) binding sites in the caudate and putamen, but did not affect 125I-α-CtxMII sites. α-CtxMII inhibition of striatal 125I-epibatidine and [125I]A-85380 binding with α-CtxMII suggest that there are both high- (Ki < 0.2 nM) and low-affinity (Ki > 100 nM) α-CtxMII-sensitive sites, as well as α-CtxMII-resistant sites, and that l-DOPA treatment influences only the low-affinity α-CtxMII-sensitive subtype. The l-DOPA effect was selective for striatal nAChRs with no change in cortical sites. Monkeys with severe nigrostriatal damage did not exhibit l-DOPA-induced declines in striatal nAChRs, suggesting that l-DOPA primarily affects nAChRs associated with dopaminergic terminals. In summary, these data show that l-DOPA treatment decreases nAChR expression, in contrast with the well established up-regulation of these sites by chronic nicotine exposure. Furthermore, they demonstrate preferential l-DOPA regulation of a novel low-affinity α-CtxMII-sensitive site. These declines in nAChRs with l-DOPA may be relevant to both the therapeutic and side effect profiles of l-DOPA therapy in Parkinson's disease.

  • Received March 5, 2003.
  • Accepted June 11, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (3)
Molecular Pharmacology
Vol. 64, Issue 3
1 Sep 2003
  • Table of Contents
  • About the Cover
  • Index by author
  • [Supplemental Data]
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
l-DOPA Treatment Modulates Nicotinic Receptors in Monkey Striatum
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

l-DOPA Treatment Modulates Nicotinic Receptors in Monkey Striatum

Maryka Quik, Tanuja Bordia, Michaella Okihara, Hong Fan, Michael J. Marks, J. Michael McIntosh and Paul Whiteaker
Molecular Pharmacology September 1, 2003, 64 (3) 619-628; DOI: https://doi.org/10.1124/mol.64.3.619

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

l-DOPA Treatment Modulates Nicotinic Receptors in Monkey Striatum

Maryka Quik, Tanuja Bordia, Michaella Okihara, Hong Fan, Michael J. Marks, J. Michael McIntosh and Paul Whiteaker
Molecular Pharmacology September 1, 2003, 64 (3) 619-628; DOI: https://doi.org/10.1124/mol.64.3.619
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics