Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Expression of the Aflatoxin B1-8,9-Epoxide-Metabolizing Murine Glutathione S-Transferase A3 Subunit Is Regulated by the Nrf2 Transcription Factor through an Antioxidant Response Element

Ian R. Jowsey, Qing Jiang, Ken Itoh, Masayuki Yamamoto and John D. Hayes
Molecular Pharmacology November 2003, 64 (5) 1018-1028; DOI: https://doi.org/10.1124/mol.64.5.1018
Ian R. Jowsey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qing Jiang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ken Itoh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masayuki Yamamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John D. Hayes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

High expression of the aflatoxin B1 (AFB1)-8,9-epoxide-conjugating glutathione S-transferase A3 (mGSTA3) subunit in mouse liver confers intrinsic resistance to AFB1 hepatocarcinogenesis. It is not known how the gene encoding this protein is regulated. The murine mGSTA3 gene has been identified using bioinformatics. It localizes to mouse chromosome 1 (A3-4), spans approximately 24.6 kilobases (kb) of DNA, and comprises seven exons. High levels of mGSTA3 mRNA are present in organs associated with detoxification. Expression of mGSTA3 in Hepa1c1c7 mouse hepatoma cells was found to be inducible by sulforaphane, an organic isothiocyanate that can transcriptionally activate genes through the antioxidant response element (ARE). Sulforaphane also induced transcription of a luciferase reporter containing a 1.5 kb fragment of the mGSTA3 5′-upstream region. A putative ARE, with sequence 5′-TGACATTGC-3′, was identified within this fragment, approximately 150 base pairs upstream of exon 1. Mutation of this sequence abrogated both basal and sulforaphane-inducible reporter activity. Overexpression of the basic-region leucine zipper Nrf2 transcription factor augmented activity of the mGSTA3-luciferase reporter through this ARE. Electrophoretic mobility shift assays demonstrated that Nrf2 binds the mGSTA3 ARE. Measurement of mGSTA3 mRNA levels in tissues isolated from both wild-type and nrf2-null mice revealed that loss of the Nrf2 transcription factor is associated with a reduction in basal expression of mGSTA3. Collectively, these data demonstrate a role for Nrf2 and the ARE in regulating transcription of mGSTA3.

  • Received May 5, 2003.
  • Accepted July 18, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (5)
Molecular Pharmacology
Vol. 64, Issue 5
1 Nov 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Expression of the Aflatoxin B1-8,9-Epoxide-Metabolizing Murine Glutathione S-Transferase A3 Subunit Is Regulated by the Nrf2 Transcription Factor through an Antioxidant Response Element
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Expression of the Aflatoxin B1-8,9-Epoxide-Metabolizing Murine Glutathione S-Transferase A3 Subunit Is Regulated by the Nrf2 Transcription Factor through an Antioxidant Response Element

Ian R. Jowsey, Qing Jiang, Ken Itoh, Masayuki Yamamoto and John D. Hayes
Molecular Pharmacology November 1, 2003, 64 (5) 1018-1028; DOI: https://doi.org/10.1124/mol.64.5.1018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Expression of the Aflatoxin B1-8,9-Epoxide-Metabolizing Murine Glutathione S-Transferase A3 Subunit Is Regulated by the Nrf2 Transcription Factor through an Antioxidant Response Element

Ian R. Jowsey, Qing Jiang, Ken Itoh, Masayuki Yamamoto and John D. Hayes
Molecular Pharmacology November 1, 2003, 64 (5) 1018-1028; DOI: https://doi.org/10.1124/mol.64.5.1018
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics