Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Up-Regulation of α1B-Adrenergic Receptors with Defects in G Protein Coupling: Ligand-Induced Protection from Receptor Instability

Steven C. Prinster, Nancy A. Schulte, Megan R. Collins and Myron L. Toews
Molecular Pharmacology November 2003, 64 (5) 1126-1135; DOI: https://doi.org/10.1124/mol.64.5.1126
Steven C. Prinster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nancy A. Schulte
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megan R. Collins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Myron L. Toews
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The biochemical basis for the unexpected agonist-induced up-regulation of the number of radioligand binding sites for two mutated α1B-adrenergic receptors reported previously was investigated. Up-regulation was independent of the expression vector used and was not prevented by cycloheximide or actinomycin D, eliminating several potential transcriptional mechanisms and new receptor protein synthesis. Antagonists were also able to induce up-regulation, suggesting that ligand occupancy without signal generation was sufficient to induce the increase in binding sites. Accordingly, we hypothesized that up-regulation results from ligand-induced protection from inherent instability of these mutated receptors. Studies with receptors in isolated membranes revealed that the two mutated receptors that exhibited up-regulation in intact cells also exhibited an inherent instability of their ligand binding capacity, and binding of either agonists or antagonists to these receptors could protect against the loss of binding. In contrast, the wild-type receptor and other mutated receptors that did not exhibit up-regulation in intact cells did not exhibit instability or ligand-induced protection in isolated membranes. The occurrence of instability and protection in isolated membranes for only those mutated receptors and ligands that exhibit up-regulation in intact cells provides compelling evidence that the apparent up-regulation of binding sites in intact cells results from ligand-induced protection from an inherent instability of these G protein coupling-defective receptors. Inclusion of protease inhibitors markedly reduced the loss of binding in isolated membranes, implicating membrane-localized proteolysis as the likely mechanism for the instability.

  • Received November 11, 2002.
  • Accepted July 21, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (5)
Molecular Pharmacology
Vol. 64, Issue 5
1 Nov 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Up-Regulation of α1B-Adrenergic Receptors with Defects in G Protein Coupling: Ligand-Induced Protection from Receptor Instability
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Up-Regulation of α1B-Adrenergic Receptors with Defects in G Protein Coupling: Ligand-Induced Protection from Receptor Instability

Steven C. Prinster, Nancy A. Schulte, Megan R. Collins and Myron L. Toews
Molecular Pharmacology November 1, 2003, 64 (5) 1126-1135; DOI: https://doi.org/10.1124/mol.64.5.1126

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Up-Regulation of α1B-Adrenergic Receptors with Defects in G Protein Coupling: Ligand-Induced Protection from Receptor Instability

Steven C. Prinster, Nancy A. Schulte, Megan R. Collins and Myron L. Toews
Molecular Pharmacology November 1, 2003, 64 (5) 1126-1135; DOI: https://doi.org/10.1124/mol.64.5.1126
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics