Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Peptide KLVFF-K6 Promotes β-Amyloid(1–40) Protofibril Growth by Association but Does Not Alter Protofibril Effects on Cellular Reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT)

Melissa A. Moss, Michael R. Nichols, Dana Kim Reed, Jan H. Hoh and Terrone L. Rosenberry
Molecular Pharmacology November 2003, 64 (5) 1160-1168; DOI: https://doi.org/10.1124/mol.64.5.1160
Melissa A. Moss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael R. Nichols
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dana Kim Reed
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan H. Hoh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terrone L. Rosenberry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The peptide KLVFF-K6 was observed by Lowe et al. (Biochemistry40:7882–7889, 2001). to simultaneously enhance amyloid β-protein (Aβ) fibrillogenesis and decrease cellular toxicity, as measured in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. It was postulated that accelerated Aβ aggregation and precipitation induced by KLVFF-K6 may lead to an increase in less toxic insoluble fibrils at the expense of more toxic soluble protofibrils. In a previous study, we distinguished between two modes of protofibril growth: elongation by monomer deposition and direct protofibril-protofibril association. These growth mechanisms could be resolved by varying Aβ monomer and NaCl concentrations. Using assays designed to isolate these distinct modes of protofibril growth, we report here that larger Aβ aggregates formed in the presence of KLVFF-K6 resulted from enhanced protofibril association. 3H-Radiomethylated KLVFF-K6 bound to associated protofibrils with an apparent Kd of 180 nM, and concentrations of free [3H]KLVFF-K6 in this range were sufficient to convert soluble protofibrils to sedimentable fibrils. However, promotion of Aβ protofibril association by KLVFF-K6 had no effect on Aβ-induced decreases in cellular MTT reduction. Therefore, our data do not support the proposal that insoluble fibrils formed with KLVFF-K6 are less toxic than soluble protofibrils. KLVFF-K6 did not alter rates of protofibril elongation by monomer deposition. In contrast, when added to Aβ monomers isolated with the use of size-exclusion chromatography, KLVFF-K6 inhibited fibrillogenesis, as measured by thioflavin T fluorescence, and this inhibition was paralleled by a failure to alter cellular MTT reduction.

  • Received June 6, 2003.
  • Accepted August 6, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (5)
Molecular Pharmacology
Vol. 64, Issue 5
1 Nov 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Peptide KLVFF-K6 Promotes β-Amyloid(1–40) Protofibril Growth by Association but Does Not Alter Protofibril Effects on Cellular Reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT)
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Peptide KLVFF-K6 Promotes β-Amyloid(1–40) Protofibril Growth by Association but Does Not Alter Protofibril Effects on Cellular Reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT)

Melissa A. Moss, Michael R. Nichols, Dana Kim Reed, Jan H. Hoh and Terrone L. Rosenberry
Molecular Pharmacology November 1, 2003, 64 (5) 1160-1168; DOI: https://doi.org/10.1124/mol.64.5.1160

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Peptide KLVFF-K6 Promotes β-Amyloid(1–40) Protofibril Growth by Association but Does Not Alter Protofibril Effects on Cellular Reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT)

Melissa A. Moss, Michael R. Nichols, Dana Kim Reed, Jan H. Hoh and Terrone L. Rosenberry
Molecular Pharmacology November 1, 2003, 64 (5) 1160-1168; DOI: https://doi.org/10.1124/mol.64.5.1160
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • α-Conotoxin Binding Site on the GABAB Receptor
  • Upacicalcet binds to the amino acid binding site of CaSR
  • Characterization of GRD and LCCH3 from Human Louse
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics