Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Role of Muscarinic Receptor Subtypes in the Constriction of Peripheral Airways: Studies on Receptor-Deficient Mice

Nicole Struckmann, Sandra Schwering, Silke Wiegand, Anja Gschnell, Masahisa Yamada, Wolfgang Kummer, Jürgen Wess and Rainer V. Haberberger
Molecular Pharmacology December 2003, 64 (6) 1444-1451; DOI: https://doi.org/10.1124/mol.64.6.1444
Nicole Struckmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sandra Schwering
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Silke Wiegand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anja Gschnell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masahisa Yamada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wolfgang Kummer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jürgen Wess
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rainer V. Haberberger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the airways, increases in cholinergic nerve activity and cholinergic hypersensitivity are associated with chronic obstructive pulmonary disease and asthma. However, the contribution of individual muscarinic acetylcholine receptor subtypes to the constriction of smaller intrapulmonary airways that are primarily responsible for airway resistance has not been analyzed. To address this issue, we used videomicroscopy and digital imaging of precision-cut lung slices derived from wild-type mice and mice deficient in either the M1 (mAChR1-/- mice), M2 (mAChR2-/- mice), or M3 receptor subtype (mAChR3-/- mice) or lacking both the M2 and M3 receptor subtypes (mAChR2/3-/- double-knockout mice). In peripheral airways from wild-type mice (mAChR+/+ mice), muscarine induced a triphasic concentration-dependent response, characterized by an initial constriction, a transient relaxation, and a sustained constriction. The bronchoconstriction was diminished by up to 60% in mAChR3-/- lungs and was completely abolished in mAChR2/3-/- lungs. The sustained bronchoconstriction was reduced in mAChR2-/- bronchi, and, interestingly, the transient relaxation was absent; the bronchoconstriction in response to 10-8 M muscarine was increased by 158% in mAChR1-/- mice. Quantitative reverse transcriptase-polymerase chain reaction analysis revealed that the disruption of specific mAChR genes had no significant effect on the expression levels of the remaining mAChR subtypes. These results demonstrate that cholinergic constriction of murine peripheral airways is mediated by the concerted action of the M2 and M3 receptor subtypes and suggest the existence of pulmonary M1 receptor activation, which counteracts cholinergic bronchoconstriction. Given the important role of muscarinic cholinergic mechanisms in pulmonary disease, these findings should be of considerable therapeutic relevance.

  • Received April 4, 2003.
  • Accepted September 5, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (6)
Molecular Pharmacology
Vol. 64, Issue 6
1 Dec 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Muscarinic Receptor Subtypes in the Constriction of Peripheral Airways: Studies on Receptor-Deficient Mice
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Role of Muscarinic Receptor Subtypes in the Constriction of Peripheral Airways: Studies on Receptor-Deficient Mice

Nicole Struckmann, Sandra Schwering, Silke Wiegand, Anja Gschnell, Masahisa Yamada, Wolfgang Kummer, Jürgen Wess and Rainer V. Haberberger
Molecular Pharmacology December 1, 2003, 64 (6) 1444-1451; DOI: https://doi.org/10.1124/mol.64.6.1444

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Role of Muscarinic Receptor Subtypes in the Constriction of Peripheral Airways: Studies on Receptor-Deficient Mice

Nicole Struckmann, Sandra Schwering, Silke Wiegand, Anja Gschnell, Masahisa Yamada, Wolfgang Kummer, Jürgen Wess and Rainer V. Haberberger
Molecular Pharmacology December 1, 2003, 64 (6) 1444-1451; DOI: https://doi.org/10.1124/mol.64.6.1444
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
  • The Binding Site for KCI807 in the Androgen Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics