Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Caffeine Regulates Neuronal Expression of the Dopamine 2 Receptor Gene

Anthony H. Stonehouse, Megumi Adachi, Elisabeth C. Walcott and Frederick S. Jones
Molecular Pharmacology December 2003, 64 (6) 1463-1473; DOI: https://doi.org/10.1124/mol.64.6.1463
Anthony H. Stonehouse
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megumi Adachi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elisabeth C. Walcott
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frederick S. Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The psychoactive drug caffeine influences neuronal physiology; however, it is unknown whether it can dynamically alter the expression of genes that influence neurotransmission. Here, we report that caffeine stimulates transcription of the dopamine 2 receptor (D2R) gene in PC-12 cells and primary striatal cultures and increases D2R protein expression in the striatum. Physiological doses of caffeine and the specific adenosine 2A receptor antagonist 8-(3-chlorostyryl) caffeine both increased the activity of a D2R/luciferase reporter construct within 24 h, and simultaneous treatment with 2-[p-(2-carboxyethyl)phenethylamino]-5′-N-ethylcarboxamidoadenosine (CGS 21680), a specific adenosine 2A receptor agonist, eliminated this effect. Tests of additional constructs revealed that specific regions of the D2R promoter (-117/-75) and 5′-untranslated region (+22/+317) were required for activation of D2R gene expression by caffeine. In primary striatal cultures, caffeine increased spontaneous firing of neurons between 12 and 80 min after treatment, whereas it increased D2R mRNA expression after only 4 h. These results indicate that regulation of D2R gene expression by caffeine occurs after the initial physiological response has subsided. In vivo, female mice treated with a dose of caffeine (50 mg/kg) showed 1.94- and 2.07-fold increases in D2R mRNA and protein expression, respectively. In contrast, male mice exhibited a 31% decrease in D2R mRNA expression and showed no changes in D2R protein expression. Collectively, these results demonstrate for the first time that caffeine alters D2R expression in neurons. They also suggest that caffeine consumption can lead to sexually dimorphic patterns of gene expression in the brain.

  • Received April 2, 2003.
  • Accepted August 19, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (6)
Molecular Pharmacology
Vol. 64, Issue 6
1 Dec 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Caffeine Regulates Neuronal Expression of the Dopamine 2 Receptor Gene
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Caffeine Regulates Neuronal Expression of the Dopamine 2 Receptor Gene

Anthony H. Stonehouse, Megumi Adachi, Elisabeth C. Walcott and Frederick S. Jones
Molecular Pharmacology December 1, 2003, 64 (6) 1463-1473; DOI: https://doi.org/10.1124/mol.64.6.1463

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Caffeine Regulates Neuronal Expression of the Dopamine 2 Receptor Gene

Anthony H. Stonehouse, Megumi Adachi, Elisabeth C. Walcott and Frederick S. Jones
Molecular Pharmacology December 1, 2003, 64 (6) 1463-1473; DOI: https://doi.org/10.1124/mol.64.6.1463
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics