Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

A New Principle for Tight Junction Modulation Based on Occludin Peptides

Staffan Tavelin, Kei Hashimoto, John Malkinson, Lucia Lazorova, Istvan Toth and Per Artursson
Molecular Pharmacology December 2003, 64 (6) 1530-1540; DOI: https://doi.org/10.1124/mol.64.6.1530
Staffan Tavelin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kei Hashimoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Malkinson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lucia Lazorova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Istvan Toth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Per Artursson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [14C]mannitol as a para-cellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C14-) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing short-term toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C14-OP90-103, which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The l- and d-diastereomers of C14-OP90-103 had distinctly different effects. The d-isomer, which releases intact OP90-103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The l-isomer, which releases OP90-103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C14-OP90-103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.

  • Received April 7, 2003.
  • Accepted September 11, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 64 (6)
Molecular Pharmacology
Vol. 64, Issue 6
1 Dec 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A New Principle for Tight Junction Modulation Based on Occludin Peptides
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A New Principle for Tight Junction Modulation Based on Occludin Peptides

Staffan Tavelin, Kei Hashimoto, John Malkinson, Lucia Lazorova, Istvan Toth and Per Artursson
Molecular Pharmacology December 1, 2003, 64 (6) 1530-1540; DOI: https://doi.org/10.1124/mol.64.6.1530

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

A New Principle for Tight Junction Modulation Based on Occludin Peptides

Staffan Tavelin, Kei Hashimoto, John Malkinson, Lucia Lazorova, Istvan Toth and Per Artursson
Molecular Pharmacology December 1, 2003, 64 (6) 1530-1540; DOI: https://doi.org/10.1124/mol.64.6.1530
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
  • The Binding Site for KCI807 in the Androgen Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics