Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Measurement of Intermolecular Distances for the Natural Agonist Peptide Docked at the Cholecystokinin Receptor Expressed in Situ Using Fluorescence Resonance Energy Transfer

Kaleeckal G. Harikumar, Delia I. Pinon, William S. Wessels, Eric S. Dawson, Terry P. Lybrand, Franklyn G. Prendergast and Laurence J. Miller
Molecular Pharmacology January 2004, 65 (1) 28-35; DOI: https://doi.org/10.1124/mol.65.1.28
Kaleeckal G. Harikumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Delia I. Pinon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William S. Wessels
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric S. Dawson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terry P. Lybrand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Franklyn G. Prendergast
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurence J. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Fluorescence resonance energy transfer is a powerful biophysical technique used to analyze the structure of membrane proteins. Here, we used this tool to determine the distances between a distinct position within a docked agonist and a series of distinct sites within the intramembranous confluence of helices and extracellular loops of the cholecystokinin (CCK) receptor. Pseudo-wild-type CCK receptor constructs having single reactive cysteine residues inserted into each of these sites were developed. The experimental strategy included the use of the full agonist, Alexa488-CCK, bound to these receptors as donor, with Alexa568 covalently bound to the specific sites within the CCK receptor as acceptor. Site-labeling was achieved by derivatization of intact cells with a novel fluorescent methanethiosulfonate reagent. A high degree of spectral overlap was observed between receptor-bound donor and receptor-derivatized acceptors, with no transfer observed for a series of controls representing saturation of the receptor binding site with nonfluorescent ligand and use of a null-reactive CCK receptor construct. The measured distances between the fluorophore within the docked agonist and the sites within the first (residue 102) and third (residue 341) extracellular loops of the receptor were shorter than those directed to the second loop (residue 204) or to intramembranous helix two (residue 94). These distances were accommodated well within a refined molecular model of the CCK-occupied receptor that is fully consistent with all existing structure-activity and photoaffinity-labeling studies. This approach provides the initial insights into the conformation of extracellular loop regions of this receptor and establishes clear differences from analogous loops in the rhodopsin crystal structure.

  • Received May 19, 2003.
  • Accepted September 26, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 65 (1)
Molecular Pharmacology
Vol. 65, Issue 1
1 Jan 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Measurement of Intermolecular Distances for the Natural Agonist Peptide Docked at the Cholecystokinin Receptor Expressed in Situ Using Fluorescence Resonance Energy Transfer
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Measurement of Intermolecular Distances for the Natural Agonist Peptide Docked at the Cholecystokinin Receptor Expressed in Situ Using Fluorescence Resonance Energy Transfer

Kaleeckal G. Harikumar, Delia I. Pinon, William S. Wessels, Eric S. Dawson, Terry P. Lybrand, Franklyn G. Prendergast and Laurence J. Miller
Molecular Pharmacology January 1, 2004, 65 (1) 28-35; DOI: https://doi.org/10.1124/mol.65.1.28

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Measurement of Intermolecular Distances for the Natural Agonist Peptide Docked at the Cholecystokinin Receptor Expressed in Situ Using Fluorescence Resonance Energy Transfer

Kaleeckal G. Harikumar, Delia I. Pinon, William S. Wessels, Eric S. Dawson, Terry P. Lybrand, Franklyn G. Prendergast and Laurence J. Miller
Molecular Pharmacology January 1, 2004, 65 (1) 28-35; DOI: https://doi.org/10.1124/mol.65.1.28
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics